Example VMware vNetworking Design w/ 2 x 10GB NICs (IP based or FC/FCoE Storage)

I have had a large response to my earlier example vNetworking design with 4 x 10GB NICs, and I have been asked, “What if I only have 2 x 10GB NICs”, so the below is an example of an environment which was limited to just two (2) x 10GB NICs and used IP Storage.

If your environment uses FC/FCoE storage, the below still applies and the IP storage components can simply be ignored.

Requirements

1. Provide high performance and redundant access to the IP Storage (if required)
2. Ensure ESXi hosts could be evacuated in a timely manner for maintenance
3. Prevent significant impact to storage performance by vMotion / Fault Tolerance and Virtual machines traffic
4. Ensure high availability for all network traffic

Constraints

1. Two (2) x 10GB NICs

Solution

Use one dvSwitch to support all VMKernel and virtual machine network traffic and use “Route based of Physical NIC Load” (commonly refereed to as “Load Based teaming”).

Use Network I/O control to ensure in the event of contention that all traffic get appropriate network resources.

Configure the following Network Share Values

IP Storage traffic : 100
ESXi Management: 25
vMotion: 25
Fault Tolerance : 25
Virtual Machine traffic : 50

Configure two (2) VMKernel’s for IP Storage and set each on a different VLAN and Subnet.

Configure VMKernels for vMotion (or Multi-NIC vMotion), ESXi Management and Fault Tolerance and set to active on both 10GB interfaces (default configuration).

All dvPortGroups for Virtual machine traffic (in this example VLANs 6 through 8) will be active on both interfaces.

The above utilizes LBT to load balance network traffic which will dynamically move workload between the two 10GB NICs once one or both network adapters reach >=75% utilization.

vNetworking BLOG 2x10gb

Conclusion

Even when your ESXi hosts only have two x 10Gb interfaces, VMware provides enterprise grade features to ensure all traffic (including IP Storage) can get access to sufficient bandwidth to continue serving production workloads until the contention subsides.

This design ensures that in the event a host needs to be evacuated, even during production hours, that it will complete in the fastest possible time with minimal or no impact to production. The faster your vMotion activity completes, the sooner DRS can get your cluster running as smoothly as possible, and in the event you are patching, the sooner your maintenance can be completed and the hosts being patched are returned to the cluster to serve your VMs.

Related Posts

1. Example Architectural Decision – Network I/O Control for ESXi Host using IP Storage (4 x 10 GB NICs)
2. Network I/O Control Shares/Limits for ESXi Host using IP Storage

Example Architectural Decision – Virtual Switch Load Balancing Policy

Problem Statement

What is the most suitable network adapter load balancing policy to be configured on the vSwitch & dvSwitch/es where 10Gb adapters are being used for dvSwitches and 1Gb for vSwitch which is only used for ESXi management traffic?

Assumptions

1. vSphere 4.1 or later

Motivation

1. Ensure optimal performance and redundancy for the network
2. Simplify the solution without compromising performance for functionality

Architectural Decision

Use “Route based on physical NIC load” for Distributed Virtual switches and “Route based on originating port ID” for vSwitches.

Justification

1. Route based on physical NIC load achieves both availability and performance
2. Requires only a basic switch configuration (802.1q and the required VLANs tagged)
3. Where a single pNIC’s utilization exceeds 75% the “route based on physical NIC load” will dynamically balance workloads to ensure the best possible performance

Implications

1. If NFS IP storage is used with a single VMKernel it will not use both connections concurrently. If using multiple 10GB connections for NFS traffic is required then two or more VLANs should be created with one VMK per VLAN. If only one VMK is used, the only option if you want traffic to go down multiple uplinks would be to use “Route based on IP hash” and have Etherchannel configured on the physical switch.

Alternatives

1. Route based on the originating port ID

Pros: Chooses an uplink based on the virtual port where the traffic entered the virtual switch. The virtual machine outbound traffic is mapped to a specific physical NIC based on the ID of the virtual port to which this virtual machine is connected. This method is simple and fast, and does not require the VMkernel to examine the frame for necessary information.

Cons: When the load is distributed in the NIC team using the port-based method, no virtual machine single-NIC will ever get more bandwidth than can be provided by a single physical adapter.

2. Route based on IP hash.

Pros: Chooses an uplink based on a hash of the source and destination IP addresses of each packet. For non-IP packets, whatever is at those offsets is used to compute the hash. In this method, a NIC for each outbound packet is chosen based on its source and destination IP address. This method has a better distribution of traffic across physical NICs.

When the load is distributed in the NIC team using the IP-based method, a virtual machine single-NIC might use the bandwidth of multiple physical adapters.

Cons: This method has higher CPU overhead and is not compatible with all switches (it requires IEEE 802.3ad link aggregation support).

3. Route based on source MAC hash

Pros: Chooses an uplink based on a hash of the source Ethernet. This method is compatible with all physical switches. The virtual machine outbound traffic is mapped to a specific physical NIC based on the virtual NIC’s MAC address.

Cons: This method has low overhead, and might not spread traffic evenly across the physical NICs.

When the load is distributed in the NIC team using the MAC-based method, no virtual machine single-NIC will ever get more bandwidth than can be provided by a single physical adapter.

4. Use explicit fail-over order

Pros: Always uses the highest order uplink from the list of Active adapters which passes failover detection criteria.

Cons: This setting is equivalent to a fail over policy and is not strictly a load balancing policy.

5. Route based on Physical NIC load

Pros: Most efficient load balancing mechanism because it is base on the actual physical NIC workload.

Cons: Not available on standard vSwitches

For further information on the topic checkout the below two articles by a couple of very knowledgable VCDX’s

Michael Webster – Etherchanneling or Load based teaming?
Frank Denneman – IP Hash verses LBT