VMware Host Isolation Response in a Nutanix Environment #NoSAN

I was recently discussing the Nutanix solution with a friend of mine and fellow VCDX, Michael Webster (@vcdxnz001) and he asked what the recommended Host Isolation Response is for Nutanix.

At this stage I must advise there is no formal recommendation, but an Official vSphere on Nutanix Best Practice guide is in the works and will be released asap.

Back to my conversation with Michael, Being that Nutanix is an IP Storage solution, my initial feeling is that Host isolation Response should be set to “Shutdown”, but I didn’t go into any more detail with Michael, so I thought it best to post a quick explanation.

This post also assumes basic knowledge of vSphere as well as the Nutanix platform, for those of you who are not familiar with Nutanix please review the following links prior to reading the remainder of this post.

About Nutanix | How Nutanix Works | 8 Strategies for a Modern Datacenter

So back on topic, in other posts I have written for IP Storage, such as (Example Architectural Decision – Host Isolation Response for IP Storage) I have concluded that “Shutdown” was the most suitable setting and recommended specifying isolation addresses of the NAS controllers.

But as Nutanix changes the game and has one virtual storage controller per ESXi host, so does this change the recommendation?

In short, No, but for those who are interested, here is why.

If we leave the default isolation address, (being the default gateway for ESXi Management), in the event the gateway is down, it will trigger an isolation response even if the rest of the network is operating fine, thus an unnecessary outage would occur.

If we configure das.isolationaddress1 & 2 with the Management IP address of any two Nutanix Controller VMs (192.168.1.x , 192.168.1.y in my below diagram) then an isolation response will only be triggered if both Nutanix Controller VMs (CVMs) are not responding, in which case, the VMs should be Shutdown as the Nutanix cluster may not be function properly with two Controllers offline concurrently as its configured by default for N+1 (or replication factor of “2” in Nutanix speak).

The below is a high level example of the above configuration.

NutanixHostIsolation

Related Articles

1. Example Architectural Decision – Host Isolation Response for a Nutanix Environment

2. Storage DRS and Nutanix – To use, or not to use, that is the question?

3. VMware HA and IP Storage

Example Architectural Decision – Datastore (LUN) and Virtual Disk Provisioning (Thin on Thin)

Problem Statement

In a vSphere environment, What is the most suitable disk provisioning type to use for the LUN and the virtual machines to ensure minimum storage overhead and optimal performance?

Requirements

1. Ensure optimal storage capacity utilization
2. Ensure storage performance is both consistent & maximized

Assumptions

1. vSphere 5.0 or later
2. VAAI is supported and enabled
3. The time frame to order new hardware (eg: New Disk Shelves) is <= 4 weeks
4. The storage solution has tools for fast/easy capacity management

Constraints

1. Block Based Storage

Motivation

1. Increase flexibility
2. Ensure physical disk space is not unnecessarily wasted

Architectural Decision

“Thin Provision” the LUN at the Storage layer and “Thin Provision” the virtual machines at the VMware layer

(Optional) Do not present more LUNs (capacity) than you have underlying physical storage (Only over-commitment happens at the vSphere layer)

Justification

1. Capacity management can be easily managed by using storage vendor tools such eg: Netapp VSC / EMC VSI / Nutanix Command Center
2. Thin Provisioning minimizes the impact of situations where customers demand a lot of disk space up front when they only end up using a small portion of the available disk space
3. Increases flexibility as all unused capacity of all datastores and the underlying physical storage remains available
4. Creating VMs with “Thick Provisioned – Eager Zeroed” disks would unnessasarilly increase the provisioning time for new VMs
5. Creating VMs as “Thick Provisioned” (Eager or Lazy Zeroed) does not provide any significant benefit (ie: Performance) but adds a serious capacity penalty
6. Using Thin Provisioned LUNs increases the flexibility at the storage layer
7. VAAI automatically raises an alarm in vSphere if a Thin Provisioned datastore usage is at >= 75% of its capacity
8. The impact of SCSI reservations causing performance issues (increased latency) when thin provisioned virtual machines (VMDKs) grow is no longer an issue as the VAAI Atomic Test & Set (ATS) primitive alleviates the issue of SCSI reservations.
9. Thin provisioned VMs reduce the overhead for Storage vMotion , Cloning and Snapshot activities. Eg: For Storage vMotion it eliminates the requirement for Storage vMotion (or the array when offloaded by VAAI XCOPY Primitive) to relocate “White space”
10. Thin provisioning leaves maximum available free space on the physical spindles which should improve performance of the storage as a whole
11. Where there is a real or perceved issue with performance, any VM can be converted to Thick Provisioned using Storage vMotion not disruptivley.
12. Using Thin Provisioned LUNs with no actual over-commitment at the storage layer reduces any risk of out of space conditions while maintaining the flexibility and efficiency with significantly reduce risk and dependency on monitoring.
13. The VAAI UNMAP primitive provides automated space reclamation to reduce wasted space from files or VMs being deleted

Alternatives

1.  Thin Provision the LUN and thick provision virtual machine disks (VMDKs)
2.  Thick provision the LUN and thick provision virtual machine disks (VMDKs)
3.  Thick provision the LUN and thin provision virtual machine disks (VMDKs)

Implications

1. If the storage at the vSphere and array level is not properly monitored, out of space conditions may occur which will lead to downtime of VMs requiring disk space although VMs not requiring additional disk space can continue to operate even where there is no available space on the datastore
2. The storage may need to be monitored in multiple locations increasing BAU effort
3. It is possible for the vSphere layer to report sufficient free space when the underlying physical capacity is close to or entirely used
4. When migrating VMs from one thin provisioned datastore to another (ie: Storage vMotion), the storage vMotion will utilize additional space on the destination datastore (and underlying storage) while leaving the source thin provisioned datastore inflated even after successful completion of the storage vMotion.
5.While the VAAI UNMAP primitive provides automated space reclamation this is a post-process, as such you still need to maintain sufficient available capacity for VMs to grow prior to UNMAP reclaiming the dead space

Related Articles

1. Datastore (LUN) and Virtual Disk Provisioning (Thin on Thick)CloudXClogo

 

Storage DRS Configuration – Architectural Decision making flowchart

I was speaking to a number of people recently, who were trying to come up with a one size fits all Storage DRS configuration for a reference architecture document.

As Storage DRS is a reasonably complicated feature, it was my opinion that a one size fits all would not be suitable, and that multiple examples should be provided when writing a reference architecture.

A collegue suggested a flowchart would assist in making the right decision around Storage DRS, so I took up the challenge to put one together.

The below is my version 0.1 of the flowchart, which I thought I would post and hopefully get some good feedback from the community, and create a good guide for those who may not have the in-depth knowledge or experience, too choose what should be in most cases an appropriate configuration for SDRS.

This also compliments some of my previous example architectural decisions which are shown in the related topic section below.

As always, feedback is always welcomed.

I hope you find this helpful.

* Updated to include the previously missing “NO” option for Data replication.

SDRS flowchart V0.2

Related Articles

1. Example Architectural Decision – Storage DRS configuration for NFS datastores

2. Example Architectural Decision – Storage DRS configuration for VMFS datastores