Virtualizing Business Critical Applications – The Web-Scale Way!

Since joining Nutanix back in July 2013, I have been working on testing the performance and resiliency of a range of virtual workloads including Business Critical Applications on the Nutanix platform. At the time, Nutanix only offered a single form factor (4 nodes in 2RU) which was not always a perfect fit depending on customer requirements.

Fast forward to August 2014 and now Nutanix has a wide range of node types to meet most workload requirements which can be found here.

The only real gap in the node types was a node which would support applications with large capacity requirements and also have a very large active working set which requires consistent low latency and high performance regardless of tier.

So what do I mean when I say “Active working Set”. I would define this as a data being regularly accessed by the VM/s, for example a file server may have 10TB of data, but users only access 10% on a regular basis. This 10% I would classify as the Active Working Set.

Now back to the topic at hand, The reason I am writing this post is because this has been a project I have been working towards for some time, and I am very excited about this product being released to the market. I have no doubt it will further increase the already fast up take of the Web-scale solutions and provide significant value and opportunities to new and existing customers wanting to simplify their datacenter/s and standardize on Nutanix Web-scale architecture.

Along with many others at Nutanix, we proposed a new node type (being the NX-8150), which has been undergoing thorough testing in my team (Solutions & Performance Engineering) for some time and I am pleased to say is being officially released (very) soon!

nx8050

What is the NX-8150?

A 1 Node per 2RU platform with the following specifications:

* 2 CPU Sockets with two CPU options (E5-2690v2 [20 cores / 3.0 GHz] OR E5-2697v2 [24 cores / 2.7 GHz]
* 4 x Intel 3700 Series SSDs (ranging from 400GB to 1.6TB ea)
* 20 x 1TB SATA HDDs
* Up to 768GB RAM
* Up to 4 x 10GB NICs
* 4 x 1GB NICs
* 1 x IPMI (Out of band Management)

What is the use case for the NX-8150?

Simply put, Applications which have high CPU/RAM requirements with large active working sets and/or the requirement for consistent high performance over a large data set.

Some examples of these applications include:

* Microsoft Exchange including DAG deployments
* Microsoft SQL including Always on Availability Groups
* Oracle including RAC
* SAP
* Microsoft Sharepoint
* Mixed Production Server Workloads with varying Capacity & I/O requirements

The NX-8150 is a great platform for the above workloads as it not only has fast CPUs and up to a massive 768GB of RAM to provide substantial compute resources to VMs, but also up to a massive 6.4TB of RAW SSD capacity for Virtual machines with high IO requirements. For workloads where peak performance is not critical the NX-8150 also provides solid consistent performance across the “Cold Tier” provided by the 20 x 1TB HDDs.

As with all Nutanix nodes, Intelligent Life-cycle management (ILM) maximizes performance by dynamically migrating hot data to SSD and cold data to SATA to provide the best of both worlds being high IOPS and high capacity.

One of the many major advantages of Nutanix Web-Scale architecture is Simplicity and its ability to remove the requirement for application specific silos! Now with the addition of the NX-8150 the vast majority of workloads including Business Critical Applications can be ran successfully on Nutanix, meaning less silos are required, resulting in a simpler, more cost effective, scalable and resilient datacenter solution.

Now with a number of customers already placing advanced orders for NX-8150’s to deploy Business Critical Applications, it wont be long until the now common “Virtual 1st” policies within many organisations turns into a “Nutanix Web-Scale 1st” policy!

Stay tuned for upcoming case studies for NX-8150 based Web-Scale solutions!

ESXi Host Isolation Response and custom isolation address configuration.

I was reviewing a vSphere design recently and I came across an interesting design choice which I thought I would share.

The architect selected the isolation response of “Leave Powered On” and disabled  “das.usedefaultisolationaddress”  (which is by default enabled) and configured multiple custom isolation addresses using the “das.isolationadressX” advanced setting.

The architect explained that this was done to minimize the chance of a false positive isolation event. In many environments such as ones using IP storage or where the ESXi Management VMKernel default gateway is not highly available, this can be a very good idea.

In this environment, the storage was provided via FC and the default gateway was highly available.

So was there a benefit in changing the default setting of “das.usedefaultisolationaddress” and configuring custom isolation addresses?

The short answer is No.

This is because the isolation response is configured with “Leave Powered On” so regardless of the host being isolated or not, the Virtual Machines will remain powered on.

So keep it simple, if your isolation response is “Leave Powered On” there is no need to change either of these advanced settings.

The below articles show examples of isolation response and custom isolation addresses configurations for IP Storage, FC storage and Hyper-converged environments.

Related Articles

1. Host Isolation Response for IP Storage
2. Host isolation response for FC based Storage
3. Host Isolation Response for a Nutanix Environment

What does Exchange running in a VMDK on NFS datastore look like to the Guest OS?

In response to the recent community post “Support for Exchange Databases running within VMDKs on NFS datastores” , the co-authors and I have received lots of feedback, of which the vast majority has been constructive and positive.

Of the feedback received which does not fall into the categories of constructive and positive, it appears to me as if this is as a result of the issue is not being properly understood for whatever reason/s.

So in an attempt to help clear up the issue, I will show exactly what the community post is talking about, with regards to running Exchange in a VMDK on an NFS datastore.

1. Exchange nor the Guest OS is not exposed in any way to the NFS protocol

Lets make this very clear, Windows or Exchange has NOTHING to do with NFS.

The configuration being proposed to be supported is as follows

1. A vSphere Virtual Machine with a Virtual SCSI Controller

In the below screen shot from my test lab, the highlighted SCSI Controller 0 is one of 4 virtual SCSI controllers assigned to this Virtual machine. While there are other types of virtual controllers which should also be supported, Paravirtual is in my opinion the most suitable for an application such as Exchange due to its high performance and low latency.

ExchangeVMSCSIController

2. A Virtual SCSI disk is presented to the vSphere Virtual Machine via a Virtual SCSI Controller

The below shows a Virtual disk (or VMDK) presented to the Virtual machine. This is a SCSI device (ie: Block Storage – which is what Exchange requires)

Note: The below shows the Virtual Disk as “Thin Provisioned” but this could also be “Thick Provisioned” although this has minimal to no performance benefit with modern storage solutions.

ExchangeVMVMDK

So now that we have covered what the underlying Virtual machine looks like, lets see what this presents to a Windows 2008 guest OS.

In Computer Management, under Device Manager we can see the expanded “Storage Controllers” section showing 4 “VMware PVSCSI Controllers”.

ExchangeVMPVSCSIController

Next, still In Computer Management, under Device Manager we can see the expanded “Disk Drives” section showing a number of “VMware Virtual disk SCSI Disk Devices” which each represent a VMDK.

 

 

ExchangeVMDeviceManager

 

 

 

 

Next we open “My Computer” to see how the VMDKs appear.

As you can see below, the VMDKs appear as normal drive letters to Windows.

ExchangeVMMyComputer

 

Lets dive down further, In “Server manager” we can see each of the VMDKs showing as an NTFS file system, again a Block storage device.

ExchangeVMDiskManager

Looking into one of the Drives, in this case, Drive F:\, we can see the Jetstress *.EDB file is sitting inside the NTFS file system which as shown in the “Properties” window is detected as a “Local disk”.

ExchangeVMFdriveProperties

So, we have a Virtual SCSI Controller, Virtual SCSI Disk, appearing to Windows as a local SCSI device formatted with NTFS.

So what’s the issue? Well as the community post explains, and this post shows, there isn’t one! This configuration should be supported!

The Guest OS and Exchange has access to block storage which meets all the requirements outlined my Microsoft, but for some reason, the fact the VMDK sits on a NFS datastore (shown below) people (including Microsoft it seems) mistakenly assume that Exchange is being serviced by NFS which it is NOT!

ExchangeVMDatastore

 

I hope this helps clear up what the community is asking for, and if anyone has any questions on the above please let me know and I will clarify.

Related Articles

1. “Support for Exchange Databases running within VMDKs on NFS datastores

2. Microsoft Exchange Improvements Suggestions Forum – Exchange on NFS/SMB