PART 2 – Problems with RAID and Object Based Storage for data protection

Following on from Part 1, this post will discuss hyper-converged Distributed File Systems (i.e,: Nutanix) and compare with traditional SAN/NAS RAID and  hyper-converged solutions using Object storage for data protection.

The below diagram shows a 4 node hyper-converged solution using a Distributed File System with the same 4 x 4TB SATA drives with data protection using replication with 2 copies. (Nutanix calls this Resiliency Factor 2)

HyperconvergedDFSNormal

The first difference you may have noticed, is the data is much more granular than the Hyper-Converged Object store example in Part 1.

The second less obvious difference is the replicated copies of the data (i.e.: The data with Purple letters) on node 1 do not reside on a single other node, but are distributed throughout the cluster.

Now lets look at a drive failure example:

Here we see Node 1 has lost a Drive hosting 8 granular pieces of data 1MB in size each.

HyperconvergedDFSRecovery

Now the Distributed File System detects that the data represented by A,B,C,D,E,I,M,P has only a single copy within the cluster and starts the restoration process.

Lets walk through each step although these steps are completed concurrently.

1. Data “A” is replicated from Node 2 to Node 3
2. Data “B” is replicated from Node 2 to Node 4
3. Data “C” is replicated from Node 3 to Node 2
4. Data “D” is replicated from Node 4 to Node 2
5. Data “E” is replicated from Node 2 to Node 4
6. Data “I” is replicated from Node 3 to Node 2
7. Data “M” is replicated from Node 4 to Node 3
8. Data “P” is replicated from Node 4 to Node 3

Now the cluster has restored resiliency.

So what was the impact on each node?readwriteiorecovery

The above table shows a simplified representation of the workload of restoring resiliency to the cluster. As we can see, the workload (being 8 granular pieces of data being replicated) was distributed across the nodes very evenly.

Next lets look at the advantages of a Hyper-Converged Solution with a Distributed File System (which Nutanix uses).

  1. Highly granular distribution using 1MB extents not large Objects.
  2. The work required to restore resiliency after one drive (or node) failure was distributed across all drives and nodes in the Cluster leveraging all drives/nodes capability. (i.e.: Not constrained to the <100 IOPS of a single drive)
  3. The restoration rebuild is a low impact activity as the workload is distributed across the cluster and not dependant on source/destination pair of drives or nodes
  4. The rebuild has a low impact on the virtual machines running on the distributed file system and consistent performance is maintained.
  5. The larger the cluster the quicker and lower impact the rebuild is as the workload is distributed across a higher number of drives/nodes for the same size (Gb) worth of restoration.
  6. With Nutanix SSDs are used not only for Read/Write cache but as a persistent storage tier, meaning the recovering data will be written to SSD and where the data being recovered is not in cache (Memory or SSD tiers) it is still possible the data will be in the persistent SSD tier which will dramatically improve the performance of the recovery.

Summary:

As discussed in Part 1, Traditional RAID used by SAN/NAS and Hyper-converged solutions using Object based storage both suffer similar issues when recovering from drive or node failure.

Where as Nutanix Hyper-converged solution using the Nutanix Distributed File System (NDFS) can restore resiliency following a drive or node failure faster and with lower impact thanks to its highly granular and distributed architecture, meaning more consistent performance for virtual machines.

Can I use my existing SAN/NAS storage with Nutanix?

I question I get regularly is, “Can I use my existing SAN/NAS storage with Nutanix?”.

The short answer is, as always “It depends”.

  • iSCSI, NFS & SMB 3.0 can be presented to Nutanix nodes just like existing non Nutanix nodes.
  • FC based storage cannot be used as Nutanix does not support FC HBAs

The below diagram shows a Nutanix NX-3460 block w/ 4 nodes having both Nutanix Containers presented to the nodes as well as iSCSI LUNs , SMB 3.0 or NFS Mount points connected from the centralized SAN/NAS.

Note: SMB 3 is not supported for ESXi hosts & NFS is not supported for Hyper-V.

Nutanix w External iSCSi NFS  SMB Storage

So what is the use cases for this style of deployment?

If you’re not ready to do an entire infrastructure refresh for whatever reason/s, you may wish to transition to Nutanix over time while maximizing ROI and lifespan of you’re existing storage.

Here is some examples of what I recommend customers do:

1. Migrate Business Critical Applications (BCAs) to Nutanix

There are many benefits of doing this including:

  • Improving resiliency / performance for vBCAs
  • Simplifying storage management for vBCAs
  • Freeing up capacity and reducing the workload on legacy SAN
  • Increasing ease of scalability for critical workloads
  • Use legacy SAN/NAS for high capacity low IOPS workloads which are better suited to centralized storage than vBCAs

Another great option is

2. Migrate Virtual Desktops (VDI) to Nutanix which shares similar benefits to migrating vBCAs including:

  • Separating non complimentary VDI workloads from Server & vBCAs as these workloads do not mix well in centralized storage deployments
  • Improving resiliency / performance for VDI
  • Simplifying storage management for VDI
  • Reducing the workload on legacy SAN/NAS which will give an effective increase in performance for workloads remaining on the SAN/NAS
  • Increasing linear scalability for VDI for if/when the environment scales
  • Use legacy SAN/NAS for high capacity low IOPS workloads which are better suited to centralized storage than VDI

The last example I wanted to point out is Management workloads.

1. Migrate Infrastructure Management workloads to Nutanix.

As has been recommended by many industry experts, separating Management VMs from customer (e.g.: vCAC / vCloud tenants) or production server/desktop workloads (at both the Compute & Storage layers) can dramatically simplify the datacenter and help improve performance, resiliency & recoverability.

Again doing this provides similar benefits to the previous two examples.

  • Separating Management workloads from Server / vBCAs / VDI as these workloads should be separate from a security, resiliency, performance and recoverability perspectives.
  • Improving resiliency / performance for all workloads in the datacenter
  • Simplifying storage management for Management
  • Reducing the workload on legacy SAN/NAS which will give an effective increase in performance for workloads remaining on the SAN/SAN
  • Increasing scalability for if/when the management demands increase.
  • Maximizes the life span / performance of the legacy SAN/NAS

In summary, where it is not possible for budgetary reasons to migrate all workloads to Nutanix, migrating some workloads such as VDI, vBCA or Management to Nutanix will help alleviate the impact of scalability, performance and/or resiliency issues with your existing centralized SAN/NAS.

Nutanix also provides a solution which can start (very) small and continue to be scaled in a granular fashion over time until the SAN/NAS goes End of Life and/or when budget exists. At this time all workloads can then be migrated to Nutanix!