Unlimited VMs per datastore? Its not a myth with Nutanix!

For many years, I have been asked on countless occasions questions relating to how many VMs can (or should) be placed in one datastore.

In fact, just this morning I was asked this same question, and I decided to whip up a quick post.

I have previously posted an Example Architectural Decision relating to Datastore sizing for Block based storage. What this example was aimed to show was a how things like RPO/RTO and performance should be taken into consideration when choosing a datastore size.

The above example is not a hard and fast rule, but an example of one deployment which I was involved in.

There is a great article written on this topic by VCDX, Jason Boche (@jasonboche), titled  “VAAI and the Unlimited VMs per Datastore Urban Myth” which covers in great detail this topic as it relates to block based storage, being iSCSI, FC & FCoE.

But what about NFS, and what about with Hyper-converged solutions like Nutanix?

NFS has gained significant popularity in recent years, and in my opinion, people who know what they are talking about, no longer refer to NFS as “Tier 3 Storage” which was once common.

With traditional storage solutions, generally only a smaller number of controllers can actively serve IO to the one NFS mount, so the limiting factor preventing running more virtual machines per NFS mount, in my experience was performance but things like RPO/RTO were and are important considerations.

NFS does not suffer from SCSI reservations which resulted in increased latency ,which is what VAAI, specifically the Atomic Test & Set or ATS primitive helped too all but eliminate for block based datastores.

LUNs are limited by there queue depth, which in most cases is 32 (sometimes 64). This is also a limiting factor, as all the VMs in a datastore (LUN) share the same queue which can lead to contention. SIOC helps manage the contention by ensuring fairness based on share values, but it does not solve the issue.

NFS on the other hand has a much larger queue depth, in fact its basically unlimited as shown below.

NFSqueuedepth

So as NFS does not suffer from SCSI reservations, or queue depth issues, what is limiting us having hundreds or more VMs per datastore?

It comes down to how many active storage controllers are able to service the NFS mount, and the performance of the storage controller/s. In addition to this your business requirements around RPO/RTO. In other words, if a NFS mount is lost, how quickly can you recover.

For most traditional shared storage products,

1. Have only 1 or 2 active controllers – thus potentially limiting performance which would lead to lower VMs per NFS datastore.

2. Do snapshots at the NFS mount layer, so if you need to recover an entire NFS mount, the larger it is, the longer it may take.

For Nutanix, by default, NFS is used to present the Nutanix Distributed File System (NDFS) to vSphere, however the key difference between Nutanix and traditional shared storage is every controller in the Nutanix cluster, can and does Actively serve IO to any datastore in the cluster concurrently.

So the limit from a performance perspective is gone thanks to Nutanix scale out, shared nothing architecture, with one virtual storage controller (CVM) per Nutanix node. The number of nodes that’s can be scaled too, is also unlimited. An example of Nutanix ability to scale can be found here – Scaling to 1 million IOPS and beyond, Linearly!

Next what about the RPO/RTO issue? Well, Nutanix does not rely on LUNs or NFS mounts for our data protection (or snapshots), this is all done at a VM layer so your RPO/RTO is now per VM, which gives you much more flexibility.

With Nutanix, you can literally run hundreds or even thousands of VMs per NFS datastore, without performance or RPO/RTO problems thanks to scale out, shared nothing architecture and the Nutanix Distributed File System.

There are some reasons why you may choose to have multiple NFS datastores even in a Nutanix environment, these include, if you want to enable Compression and/or De-duplication which are enabled/disabled on a per container (or datastore) level. As some workloads don’t compress or dedupe well, these types of workloads should be excluded to reduce the overhead on the cluster.

It is important to note, Nutanix uses a concept called a “Storage Pool” which contains all the storage for the Nutanix cluster. On top of a “Storage Pool” you create “Containers” (or datastores). This means regardless of if you have 1 or 100 datastores, they all still sit on top of the one “Storage Pool” which means you still have access to the same amount of storage capacity, with no silos for maximum capacity utilization (and performance!).

Lastly, Nutanix does not suffer from the same availability concerns as traditional shared storage where a single LUN could potentially be lost. This is due to the distributed architecture of the Nutanix solution. For more information on how Nutanix is more highly available than traditional shared storage, check out “Scale out, Shared Nothing Architecture Resiliency by Nutanix

Check out a screen shot of one cluster with ~800 VMs on a single datastore. Note: The sub millisecond latency and 14K IOPS w/ ~900MBps throughput. Not bad!

800VMsonDatastore

Example Architectural Decision – Host Isolation Response for a Nutanix Environment

Problem Statement

What are the most suitable HA / host isolation response when using Nutanix?

Assumptions

1. vSphere 5.0 or greater
2. Two x 10GB Network interfaces are shared for Nutanix Storage Traffic and Virtual Machine Traffic

Motivation

1. Minimize the chance of a false positive isolation response
2. Ensure in the event the storage is unavailable that virtual machines are promptly shutdown to enable HA to recover the VMs in a timely manner (where other hosts are unaffected by isolation) and to prevent a “split brain” scenario
3. Ensure maximum availability

Architectural Decision

Turn off the default isolation address and configure the below specified isolation addresses, which check connectivity to multiple Nutanix Controller VMs (CVMs) on the IP Storage VLAN.

Configure the following Isolation addresses

das.isolationaddress1 : NDFS Cluster IP Address

Configure Host Isolation Response to: Power Off

For Nutanix Controller VMs override the cluster setting and configure Host Isolation Response to “Leave Powered On”

Justification

1. The ESXi Management traffic along with the Virtual machine traffic and inter-Nutanix node storage traffic is running over 2 x 10GB connections. Using the ESXi management gateway (default isolation address) to check for isolation is not suitable as the management network can be offline without impacting the IP storage or data networks. This situation could lead to false positives isolation responses.
2. The isolation addresses chosen tests IP storage connectivity over the converged 10Gb network and in the event this is unavailable, there is no point testing further connectivity as Virtual machines cannot function without their storage
3. In the event the Nutanix cluster IP address cannot be reached by ICMP the Node will not be able to properly function. As such, triggering isolation response and powering off the VMs based on this criteria is logical as the VMs will not be able to function under these conditions.
4. In the event the NDFS Cluster IP address does not respond to ICMP on the Management interfaces it is likely there has been an isolation event OR a catastrophic failure in the environment, either to the network, or the storage controllers themselves, in which case the safest option is to Power Off the VMs.
5. In the event the isolation response is triggered and the isolation does not impact all hosts within the cluster, the VMs can be restarted by HA onto a surviving host and resume functioning
6. Using the Nutanix Controller VM (CVM) IP address (192.168.5.2) for the Isolation address is not suitable as this address exists on each ESXi hosts and as such it is not a good candidate for isolation detection as the host will always be able to find this address even when the network is offline due to the CVM being local to the host
7. The Nutanix Controller VM accesses local storage and can continue to run locally even in an isolation event. When the isolated event is over, the CVM will then regain connectivity to the other CVMs in the Nutanix cluster.
8. Shutting down the CVM would only increase the recovery time once the isolation even is over and has no added benefits.

Implications

1. In the event the host cannot reach any of the isolation addresses, virtual machines will be powered off.
2. Initial cluster setup would require the vSphere administrator to override the Cluster settings for each Controller VM. Note: This is a one time task (Set & Forget)

Alternatives

1. Set Host isolation response to “Leave Powered On”
2. Do not use Datastore heartbeating
3. Use the default isolation address
4. Leave the CVM on the default cluster setting and “Shutdown” on isolation

Related Articles

1. VMware Host Isolation Response in a Nutanix Environment #NoSAN

2. Storage DRS and Nutanix – To use, or not to use, that is the question?

3. VMware HA and IP Storage

VMware Host Isolation Response in a Nutanix Environment #NoSAN

I was recently discussing the Nutanix solution with a friend of mine and fellow VCDX, Michael Webster (@vcdxnz001) and he asked what the recommended Host Isolation Response is for Nutanix.

At this stage I must advise there is no formal recommendation, but an Official vSphere on Nutanix Best Practice guide is in the works and will be released asap.

Back to my conversation with Michael, Being that Nutanix is an IP Storage solution, my initial feeling is that Host isolation Response should be set to “Shutdown”, but I didn’t go into any more detail with Michael, so I thought it best to post a quick explanation.

This post also assumes basic knowledge of vSphere as well as the Nutanix platform, for those of you who are not familiar with Nutanix please review the following links prior to reading the remainder of this post.

About Nutanix | How Nutanix Works | 8 Strategies for a Modern Datacenter

So back on topic, in other posts I have written for IP Storage, such as (Example Architectural Decision – Host Isolation Response for IP Storage) I have concluded that “Shutdown” was the most suitable setting and recommended specifying isolation addresses of the NAS controllers.

But as Nutanix changes the game and has one virtual storage controller per ESXi host, so does this change the recommendation?

In short, No, but for those who are interested, here is why.

If we leave the default isolation address, (being the default gateway for ESXi Management), in the event the gateway is down, it will trigger an isolation response even if the rest of the network is operating fine, thus an unnecessary outage would occur.

If we configure das.isolationaddress1 & 2 with the Management IP address of any two Nutanix Controller VMs (192.168.1.x , 192.168.1.y in my below diagram) then an isolation response will only be triggered if both Nutanix Controller VMs (CVMs) are not responding, in which case, the VMs should be Shutdown as the Nutanix cluster may not be function properly with two Controllers offline concurrently as its configured by default for N+1 (or replication factor of “2” in Nutanix speak).

The below is a high level example of the above configuration.

NutanixHostIsolation

Related Articles

1. Example Architectural Decision – Host Isolation Response for a Nutanix Environment

2. Storage DRS and Nutanix – To use, or not to use, that is the question?

3. VMware HA and IP Storage