Example Architectural Decision – Storage DRS Configuration for NFS Datastores

Problem Statement

In a vSphere environment, a NAS array is presenting Thin Provisioned NFS mounts (Datastores) to the vSphere environment. The storage has deduplication enabled across the datastores being used for the SDRS cluster. What is the most suitable configuration for SDRS to ensure the underlying storage efficiencies are not compromised while maintaining an even distribution of utilized capacity and I/O across all datastores?

Assumptions

1. vSphere 5.0 or later
2. NFS Based storage
3. NFS Mounts (Datastores) are Thin Provisioned
4. Deduplication is enabled on the array
5. VAAI is supported by the array and enabled across the vSphere environment
6. All datastores in a Datastore cluster are of the same RAID Type / Offer Similar performance due to having a similar spindle count
7. All datastores are presented to all hosts within the cluster

Motivation

1. Ensure storage efficiencies are not negatively impacted
2. Minimize the vSphere administrators workload where possible

Architectural Decision

Set the DRS automation setting to “No Automation (Manual Mode)”

  • Set “Utilized Space” threshold to 80%
  • Set “I/O latency” to 15ms
  • I/O Metric Inclution – Enabled

Advanced Options

  • No recommendations until utilization difference between source and destination is: 10%
  • Evaluate I/O load every 8 Hours
  • I/O Imbalance threshold  3

Justification

1. Setting Storage DRS to “No Automation (Manual Mode)” ensures that the administrator can confirm the recommendation will not Negatively impact the efficiency of Deduplication or  the thin provisioned NFS mounts
2. When creating a new Virtual Machine, in the “Ready to complete” window, Tick the “Show all storage recommendations” check box to review Storage DRS recommendations and override the recommendations where required
3. Where a VM is deduplicated on the source datastore, and it is moved to the destination datastore, this write activity is considered new data which will scanned by the post deduplication process which will use valuable CPU cycles on the array
4. “XCOPY” is not supported for NFS, as such, any Storage vMotion activity can only be offloaded to the array using the “Full File Clone” when a virtual machine is powered off.
5. Array level snapshots cannot be migrated with the VM using Storage DRS. If Virtual machines were automatically moved then the array level snapshot relasionship with the VM is broken and it cannot be leveraged
6. NFS datastores can be set to autogrow  by a predefined size in the event they reach a predefined utilization threashold
7. Where a significant I/O imbalance is detected by SDRS, the vSphere administrator can consider the impact of the Storage vMotion and where suitable apply the SDRS recommendation
8. SDRS still provides valuable “initial placement” for new virtual machines which will help avoid a situation where datastores are unevenly balanced from a capacity perspective
9. Storage DRS will still analysis I/O and where an imbalance is identified the vSphere administrator can choose to apply the SDRS recommendation to address the I/O imbalance

Implications

1. When selecting datastores for the datastore cluster, having VASA enabled allows the “System Capability” column to be populated in the “New Datastore Cluster” wizard to ensure suitable datastores of similar performance, RAID type and features are grouped together
2. A vSphere administrator will need to review SDRS recommendations

Alternatives

1. Use “Fully Automated”

Example Architectural Decision – DRS Automation Level

Problem Statement

What is the most suitable DRS automation level and migration threshold for a vSphere cluster running an IaaS offering with a self service portal w/ unpredictable workloads?

Assumptions

1. Workload types and size are unpredictable in a IaaS environment, workloads may vary greatly and without notice
2. The solution needs to be as automated as possible without introducing significant risk

Motivation

1. Prevent unnecessary vMotion migrations which will impact host & cluster performance
2.Ensure the cluster standard deviation is minimal
3. Reduce administrative overhead of reviewing and approving DRS recommendations

Alternatives

1.Use Fully automated and Migration threshold 1 – Apply priority 1 recommendations
2.Use Fully automated and Migration threshold 2- Apply priority 1 & 2 recommendations
3. Use Fully automated and Migration threshold 4- Apply priority 1,2,3 and 4 recommendations
4.Use Fully automated and Migration threshold 5- Apply priority 1,2,3,4 & 5 recommendations
5. Set DRS to manual and have a VMware administrator assess and apply recommendations

Justification

1. Prevent excessive vMotion migrations that do not provide significant benefit to cluster balance as the vMotion itself will use cluster and network resources
2. Ensure cluster remains in a reasonably load balanced state without resource being wasted on load balancing for minimal improvement
3. DRS is a low risk, proven technology which has been used in large production environments for many years
4. Setting DRS to manual would be a significant administrative overhead and introduce additional risk from human error
5. Setting a more aggressive DRS migration threshold would put an additional load on the cluster which will likely not result in significantly better balance

Architectural Decision

Use DRS in Fully Automated mode with setting “3” – Apply priority 1,2 and 3 recommendations

Implications

1. DRS will not move workloads via vMotion where only a moderate improvement to the cluster will be achieved
2. At times, including after performing updates (via VUM) of ESXi hosts the cluster may appear to be unevenly balanced as DRS may calculate minimal benefit from migrations. Setting DRS to “Use Fully automated and Migration threshold 5” for a short period of time following maintenance should result in a more evenly balanced cluster.