What does Exchange running in a VMDK on NFS datastore look like to the Guest OS?

In response to the recent community post “Support for Exchange Databases running within VMDKs on NFS datastores” , the co-authors and I have received lots of feedback, of which the vast majority has been constructive and positive.

Of the feedback received which does not fall into the categories of constructive and positive, it appears to me as if this is as a result of the issue is not being properly understood for whatever reason/s.

So in an attempt to help clear up the issue, I will show exactly what the community post is talking about, with regards to running Exchange in a VMDK on an NFS datastore.

1. Exchange nor the Guest OS is not exposed in any way to the NFS protocol

Lets make this very clear, Windows or Exchange has NOTHING to do with NFS.

The configuration being proposed to be supported is as follows

1. A vSphere Virtual Machine with a Virtual SCSI Controller

In the below screen shot from my test lab, the highlighted SCSI Controller 0 is one of 4 virtual SCSI controllers assigned to this Virtual machine. While there are other types of virtual controllers which should also be supported, Paravirtual is in my opinion the most suitable for an application such as Exchange due to its high performance and low latency.

ExchangeVMSCSIController

2. A Virtual SCSI disk is presented to the vSphere Virtual Machine via a Virtual SCSI Controller

The below shows a Virtual disk (or VMDK) presented to the Virtual machine. This is a SCSI device (ie: Block Storage – which is what Exchange requires)

Note: The below shows the Virtual Disk as “Thin Provisioned” but this could also be “Thick Provisioned” although this has minimal to no performance benefit with modern storage solutions.

ExchangeVMVMDK

So now that we have covered what the underlying Virtual machine looks like, lets see what this presents to a Windows 2008 guest OS.

In Computer Management, under Device Manager we can see the expanded “Storage Controllers” section showing 4 “VMware PVSCSI Controllers”.

ExchangeVMPVSCSIController

Next, still In Computer Management, under Device Manager we can see the expanded “Disk Drives” section showing a number of “VMware Virtual disk SCSI Disk Devices” which each represent a VMDK.

 

 

ExchangeVMDeviceManager

 

 

 

 

Next we open “My Computer” to see how the VMDKs appear.

As you can see below, the VMDKs appear as normal drive letters to Windows.

ExchangeVMMyComputer

 

Lets dive down further, In “Server manager” we can see each of the VMDKs showing as an NTFS file system, again a Block storage device.

ExchangeVMDiskManager

Looking into one of the Drives, in this case, Drive F:\, we can see the Jetstress *.EDB file is sitting inside the NTFS file system which as shown in the “Properties” window is detected as a “Local disk”.

ExchangeVMFdriveProperties

So, we have a Virtual SCSI Controller, Virtual SCSI Disk, appearing to Windows as a local SCSI device formatted with NTFS.

So what’s the issue? Well as the community post explains, and this post shows, there isn’t one! This configuration should be supported!

The Guest OS and Exchange has access to block storage which meets all the requirements outlined my Microsoft, but for some reason, the fact the VMDK sits on a NFS datastore (shown below) people (including Microsoft it seems) mistakenly assume that Exchange is being serviced by NFS which it is NOT!

ExchangeVMDatastore

 

I hope this helps clear up what the community is asking for, and if anyone has any questions on the above please let me know and I will clarify.

Related Articles

1. “Support for Exchange Databases running within VMDKs on NFS datastores

2. Microsoft Exchange Improvements Suggestions Forum – Exchange on NFS/SMB

Virtualizing Exchange on vSphere with NFS backed storage?

For many years, customers have been realising the benefits of file based storage from one or more of the many storage vendors offering NFS.

NFS makes a ton of sense for virtualization, and virtualizing Business Critical applications such as Exchange, along with the rest of a company’s servers, can be a great way to reduce complexity and save on CAPEX/OPEX.

However, some vendors, have licensing or support statements which make this more difficult than it needs to be.

One such vendor is Microsoft.

Microsoft currently don’t support Exchange running inside a VMDK on an NFS datastore, even though the VMDK is a virtual SCSI device and acts/performs the same as if it was on a block based LUN, such as FC/FCoE or iSCSI.

I decided to reach out to a bunch of great guys in the virtualization community to try and get some awareness of this issue, and get Microsoft to update the outdated and technically invalid support statement.

As a result, the following TechNet forum article has been posted

Support for Exchange Databases running within VMDKs on NFS datastores

There is also a suggestion in the Microsoft Product improvement forum on the same topic, which as a result of the communities efforts in the past few weeks, have seen it sky rocket to the #1 improvement suggestion to microsoft.

The post and voting can be found here.

Support storing Exchange datat on VMDKs on File shares (NFS/SMB)

So please check out these two articles, and vote and leave your comments in support of this issue. Supporting Exchange in VMDKs on NFS is a No lose situation for customers, and that is what it is all about!

Related Articles:

Integrity of Write I/O for VMs on NFS Datastores Series

Part 1 – Emulation of the SCSI Protocol
Part 2 – Forced Unit Access (FUA) & Write Through
Part 3 – Write Ordering
Part 4 – Torn Writes
Part 5 – Data Corruption

Unlimited VMs per datastore? Its not a myth with Nutanix!

For many years, I have been asked on countless occasions questions relating to how many VMs can (or should) be placed in one datastore.

In fact, just this morning I was asked this same question, and I decided to whip up a quick post.

I have previously posted an Example Architectural Decision relating to Datastore sizing for Block based storage. What this example was aimed to show was a how things like RPO/RTO and performance should be taken into consideration when choosing a datastore size.

The above example is not a hard and fast rule, but an example of one deployment which I was involved in.

There is a great article written on this topic by VCDX, Jason Boche (@jasonboche), titled  “VAAI and the Unlimited VMs per Datastore Urban Myth” which covers in great detail this topic as it relates to block based storage, being iSCSI, FC & FCoE.

But what about NFS, and what about with Hyper-converged solutions like Nutanix?

NFS has gained significant popularity in recent years, and in my opinion, people who know what they are talking about, no longer refer to NFS as “Tier 3 Storage” which was once common.

With traditional storage solutions, generally only a smaller number of controllers can actively serve IO to the one NFS mount, so the limiting factor preventing running more virtual machines per NFS mount, in my experience was performance but things like RPO/RTO were and are important considerations.

NFS does not suffer from SCSI reservations which resulted in increased latency ,which is what VAAI, specifically the Atomic Test & Set or ATS primitive helped too all but eliminate for block based datastores.

LUNs are limited by there queue depth, which in most cases is 32 (sometimes 64). This is also a limiting factor, as all the VMs in a datastore (LUN) share the same queue which can lead to contention. SIOC helps manage the contention by ensuring fairness based on share values, but it does not solve the issue.

NFS on the other hand has a much larger queue depth, in fact its basically unlimited as shown below.

NFSqueuedepth

So as NFS does not suffer from SCSI reservations, or queue depth issues, what is limiting us having hundreds or more VMs per datastore?

It comes down to how many active storage controllers are able to service the NFS mount, and the performance of the storage controller/s. In addition to this your business requirements around RPO/RTO. In other words, if a NFS mount is lost, how quickly can you recover.

For most traditional shared storage products,

1. Have only 1 or 2 active controllers – thus potentially limiting performance which would lead to lower VMs per NFS datastore.

2. Do snapshots at the NFS mount layer, so if you need to recover an entire NFS mount, the larger it is, the longer it may take.

For Nutanix, by default, NFS is used to present the Nutanix Distributed File System (NDFS) to vSphere, however the key difference between Nutanix and traditional shared storage is every controller in the Nutanix cluster, can and does Actively serve IO to any datastore in the cluster concurrently.

So the limit from a performance perspective is gone thanks to Nutanix scale out, shared nothing architecture, with one virtual storage controller (CVM) per Nutanix node. The number of nodes that’s can be scaled too, is also unlimited. An example of Nutanix ability to scale can be found here – Scaling to 1 million IOPS and beyond, Linearly!

Next what about the RPO/RTO issue? Well, Nutanix does not rely on LUNs or NFS mounts for our data protection (or snapshots), this is all done at a VM layer so your RPO/RTO is now per VM, which gives you much more flexibility.

With Nutanix, you can literally run hundreds or even thousands of VMs per NFS datastore, without performance or RPO/RTO problems thanks to scale out, shared nothing architecture and the Nutanix Distributed File System.

There are some reasons why you may choose to have multiple NFS datastores even in a Nutanix environment, these include, if you want to enable Compression and/or De-duplication which are enabled/disabled on a per container (or datastore) level. As some workloads don’t compress or dedupe well, these types of workloads should be excluded to reduce the overhead on the cluster.

It is important to note, Nutanix uses a concept called a “Storage Pool” which contains all the storage for the Nutanix cluster. On top of a “Storage Pool” you create “Containers” (or datastores). This means regardless of if you have 1 or 100 datastores, they all still sit on top of the one “Storage Pool” which means you still have access to the same amount of storage capacity, with no silos for maximum capacity utilization (and performance!).

Lastly, Nutanix does not suffer from the same availability concerns as traditional shared storage where a single LUN could potentially be lost. This is due to the distributed architecture of the Nutanix solution. For more information on how Nutanix is more highly available than traditional shared storage, check out “Scale out, Shared Nothing Architecture Resiliency by Nutanix

Check out a screen shot of one cluster with ~800 VMs on a single datastore. Note: The sub millisecond latency and 14K IOPS w/ ~900MBps throughput. Not bad!

800VMsonDatastore