Nutanix Scalability – Part 5 – Scaling Storage Performance for Physical Machines

Part 3 and Part 4 has taught us that Nutanix provides excellent scalability for Virtual Machines and provides ABS and Volume Group Load Balancer (VG LB) for niche workloads which may require more performance than a single node can provide.

Now that we’ve learned how to scale a Virtual machines performance, let’s see how the same rules apply to physical servers.

So you’ve got your physical server and a Nutanix cluster, now what?

As Part 3 and Part 4 explained, more virtual disks increase the storage performance for virtual machine, the same is true for physical servers using ABS.

Virtual disks will be presented to the physical server via iSCSI (ABS), for optimal performance you should have at least one virtual disk per node in your cluster. The reason for this is each vDisk is managed by a stargate (Nutanix IO engine) instance which runs in every Controller VM (CVM).

If you have a four node cluster, you need to use at least four virtual disks to utilise the four node cluster optimally. For an eight node cluster, eight or more virtual disks is required to ensure all CVMs (stargate instances) can actively provide a boost in performance.

The following tweet shows how the pathing increased from four on the four node cluster and when an additional fours node were added the pathing dynamically changed to use all eight nodes.

Therefore when using ABS for physical workloads, especially those high end database servers, I recommend using a minimum of 8 vDisks however if your cluster size is greater than 8, match the number of vDisks with the cluster size as your starting point.

If you have an 8 node cluster, you could for example use 32 vDisks and these will spread evenly across the nodes, resulting in four per stargate instance which is perfectly fine.

Using more vDisks than your current cluster size also means when additional nodes are added, ABS can dynamically load balance the vDisks across the new and existing nodes to automatically scale your performance.

Let’s cover the same MS Exchange and MS SQL examples covered for Virtual Machines in Parts 3 and 4 but now specifically for physical servers using ABS.

Let’s say we have an MS Exchange server with 20 databases, the performance requirements for each database is typically in the range of hundred of IOPS, in which case I would recommend one virtual disk (e.g.: VMDK) per database and another for the logs.

In the case of a large MS SQL server which may require tens or hundreds of thousands of IOPS to a single database, I recommend using multiple vDisks per database which involves Splitting SQL datafiles across multiple VMDKs to optimise VM physical server performance.

Sound familiar? The above two paragraphs are literally a copy/paste from Part 3 because the exact same rules apply to physical servers and virtual machines. Simple right!

Still need more performance?

Again, the exact same rules apply to physical servers with ABS as they do to virtual machines. In no particular order, as we’ve learned from Part 3 & 4:

  • Increase the vCPU of the Nutanix Controller VM (CVM)
  • Increase the vRAM of the Nutanix Controller VM (CVM)
  • Add storage only nodes

Can’t get much easier than that!

Summary:

From Parts 3, 4 and 5 we have learned that Nutanix provides the ability to scale the performance of individual servers, be it physical or virtual using the same simple strategies of adding virtual disks, storage only nodes or Controller VM (CVM) resources and how doing so increases performance to meet virtually (pun intended) any performance requirements.

Is there any reason you couldn’t confidently say Nutanix is doing 3 tier better than the SAN vendors? I’d love to hear if you have any corner cases.

Back to the Scalability, Resiliency and Performance Index.

Nutanix Scalability – Part 4 – Storage Performance for Monster VMs with AHV!

In Part 3 we learned a number of ways to scale storage performance for a single VM including but not limited too:

  • Using multiple PVSCSI controllers
  • Using multiple virtual disks
  • Spreading large workloads (like databases) across multiple vDisks/Controllers
  • Increasing the CVMs vCPUs and/or vRAM
  • Adding storage only nodes
  • Using Acropolis Block Services (ABS)

Now here at Nutanix, especially in the Solutions/Performance engineering team we’re never satisfied and we’re always pushing for more efficiency which leads to greater performance.

A colleague of mine, Michael Webster (NPX#007 and VCDX#66) was a key part of the team who designed and developed what is now known as “Volume Group Load Balancer” or VG LB for short.

Volume Group Load Balancer is an Acropolis Hypervisor (AHV) only capability which combines the IO path efficiencies of AHV Turbo Mode with the benefits of the Acropolis Distributed Storage Fabric (ADSF) to create a more simplified and dynamic version of Acropolis Block Services (ABS).

One major advantage of VG LB over ABS is it’s simplicity.

There is no requirement for in-guest iSCSI which removes the potential for driver and configuration issues and VG LB is configured through PRISM UI by using the update VM option making it a breeze to setup.

UpdateVMwVG

The only complexity with VG LB currently is to enable the load balancing functionality, it needs to be applied at the Acropolis CLI (acli) using the following command:

acli vg.update Insert_vg_name_here load_balance_vm_attachments=true

In the event you do not wish all Controller VMs to provide IO for VG LB, one or more CVMs can be excluded from load balancing. However I recommend leaving the cluster to sort itself out as the Acropolis Dynamic Scheduler (ADS) will move virtual disk sessions if CVM contention is discovered.

iSCSI sessions are also dynamically balanced as workload on individual CVMs exceed 85% to ensure hot spots are quickly alleviated which is another reason why CVMs should not be excluded as you are likely constraining performance for the VG LB VM unnecessarily.

VG LB is how Nutanix has achieved >1 MILLION 8k random read IOPS at just 0.11ms latency from a single VM as shown below.

This was achieved using just a 10 node cluster, imagine what can be achieved when you scale out the cluster further.

A Frequently asked question relating to high performance VMs is what happens when you vMotion?

The link above shows this in detail including a YouTube demonstration, but in short the IO dropped below 1 million IOPS for approx 3 seconds during the vMotion with the lowest value recorded at 956k IOPS. I’d say an approx 10% drop for 3 seconds is pretty reasonable as the performance drop is caused by the migration stunning the VM and not by the underlying storage.

The next question is “What about mixed read/write workloads?

Again the link above shows this in detail including a YouTube demonstration, but at this stage you’re probably not surprised that this result shows a maximum starting baseline of 436K random read and 187k random write IOPS and immediately following the migration performance reduced to 359k read and 164k write IOPS before achieving greater performance than the original baseline @ 446k read and 192k IOPS within a few seconds.

So not only can Nutanix VG LB achieve fantastic performance, it can do so during normal day to day operations such as VM live migrations.

The VG LB capability is unique to Nutanix and is only achievable thanks to the true Distributed Storage Fabric.

With Nutanix highly scalable software defined storage and the unique capabilities like storage only nodes, AHV Turbo and VG LB, the question “Why?” seriously needs to be asked of anyone recommending a SAN.

I’d appreciate any constructive questions/comments on use cases which you believe Nutanix cannot handle and I’ll follow up with a blog post explaining how it can be done, or I’ll confirm if it’s not currently supported/recommended.

Summary:

Part 3 has taught us that Nutanix provides excellent scalability for Virtual Machines and provides ABS for niche workloads which may require more performance than a single node can offer while Part 4 explains how Nutanix’ next generation hypervisor (AHV) provides further enhanced and simplified performance for monster VMs with Volume Group Load Balancing leveraging Turbo Mode.

Back to the Scalability, Resiliency and Performance Index.

Nutanix Scalability – Part 2 – Compute (CPU/RAM)

Following on from Part 1 of the Scalability series where we discussed how Nutanix can scale storage capacity seperate to compute, the next obvious topic is to talk about scaling CPU and Memory resources at both the workload and cluster level.

Let’s first recap the problems with scaling compute with traditional shared storage.

HCInotHCI

Yuk! That looks like old school 3-tier stuff to me!

Non HCI workloads on compute only nodes would therefore:

  • Be running in the same setup as traditional 3-tier infrastructure
  • Have different performance than HCI based workloads
  • Loose the advantage of having compute + storage close together
  • Increase dependency on Network
  • Impact network utilization of HCI node/s
  • Impact benefits of HCI for the native HCI workloads and much more.

The industry has accepted HCI as they way of the future and while adding compute only nodes might sound nice at a high level, its just re-introducing the classic 3-tier complexity and problems of the past when if we review the actual requirements it’s very rare to see a Nutanix node have insufficient resources when sized/configured correctly.

Customers are often surprised when they show me their workloads and I don’t seem surprised by the CPU/RAM or storage IO or capacity requirements. I can’t tell you how many times I’ve made statements like “You’re applications requirements are not that high, I’ve seen much worse!”.

Examples of scaling compute with Nutanix

Example 1: Scaling up a Virtual Machines compute resources:

SQL/Oracle DBA: Our application is growing/running slowly, We need more CPU/RAM!

Nutanix: You have several options:

a) Scale up the virtual machine’s vCPUs and vRAM to match the size of the NUMA node.
b) Scale up the virtual machine’s vCPUs and vRAM to be the same number of pCore’s as the host minus the Nutanix CVM vCPUs and do the same with the RAM.

The first option is the optimal as it will ensure maximum memory performance as the CPU will be assessing memory within the NUMA boundary, however the second option is still viable and for applications such as SQL, the impact of insufficient memory can be higher than the penalty of crossing a NUMA boundary.

BUT MY WORKLOAD IS UNIQUE, IT NEEDS A PHYSICAL SERVER!!

Despite hearing these type of statements by prospective and existing customers, Very few workloads actually need more CPU/RAM that a modern Nutanix (or OEM/Software only) node can provide even if you remove resources for the Controller VM (CVM). I find that it’s usually only a perceived requirement for physical servers and in reality, a reasonably sized VM on a standard node will deliver the desired business outcome/s comfortably.

Currently Nutanix NX nodes support Intel Platinum 8180 processors which have 28 physical cores @ 2.5 GHz per socket for a total of 56 physical cores (112 threads).

If you had say an existing physical server using a fairly modern Intel Broadwell E5-2699 v4 with dual 22 physical core processors, you have a total SPECint_rate of 1760 or 40 per core.

Compare that to the Intel Platinum 8180 processor and you have a total SPECint_rate of 2720 or 48.5 per core.

This is an increase per core of 21.25%.

So if you’re moving from that physical server using Intel Broadwell E5-2699 v4 CPUs (44 cores) and you move that workload to Nutanix with ZERO CPU overcommitment (vCPU:pCore ratio 1:1) using the Intel Platinum 8180 processor, assuming we reserve 8 pCores for the CVM we still have 48 pCores for the SQL VM.

That’s a SpecIntRate of 2328 which is higher than the physical server using all cores.

That’s over 32% more CPU performance for the Virtual Machine compared to the dedicated physical server.

The reality is the Nutanix CVM and Acropolis Distributed Storage Fabric (ADSF) provides high performance, low latency storage which also drives further CPU efficiency by eliminating CPU WAIT (CPU cycles wasted waiting for I/O to complete).

As you can see from this simple example, a Virtual Machine on Nutanix can easily replace even a modern physical server and even provide better performance with only one generation newer CPU. Think about how your 3-5 year old physical servers will feel when they jump multiple generations of CPU and get scale out flash based storage.

Example 2: A VM (genuinely) needs more CPU/RAM than Nutanix nodes have.

SQL/Oracle DBA: Our application/s is needs more CPU/RAM than our biggest node/s can provide.

Nutanix: You have several options:

a) Purchase one or more larger node (e.g.: NX-8035-G6 w/ Intel Platinum or Gold Processors, add them to the existing cluster and live migrate your VM/s to that/those nodes. Use affinity rules to keep critical VMs on the highest performance nodes.

Nutanix supports mixing different hardware types/generations in the same cluster and this can be a preferred option over creating a dedicated cluster for several reasons.

  • Larger clusters provide more targets for replication traffic (i.e.: RF2 or RF3) meaning lower average write latency
  • Larger clusters provide higher resiliency as they can potentially tolerate more failures and rebuild follow a drive/node or nodes failing faster.
  • Larger clusters help ensure the impact of a failure is lower as a lower percentage of cluster resources are lost

b) Purchase one or more larger node (e.g.: NX-8035-G6 w/ Intel Platinum or Gold Processors, and create a new cluster and migrate your VM/s to that cluster.

A dedicated cluster may sound attractive, but in most cases I recommend mix workload clusters as they ultimately provide higher performance, resiliency and flexibility.

c) Scale out your workloads

Applications like MS Exchange, MS SQL and Oracle RAC can (and arguably should) be scaled out rather than scaled up as doing so provides increased performance, resiliency and reduces overall infrastructure costs (e.g.: More cheaper/smaller processors can be used as opposed to premium processors like Intel Platinum series).

One large VM hosting dozens of databases is rarely a good idea, so scale out and run more VMs, distributed across your Nutanix cluster and spread the workload across all the VMs.

For 99% of workloads, I do not see the real world value of compute only nodes. But there are always exceptions to every rule.

Potential Exceptions:

Example 3: Re-using existing hardware

SQL DBA: I love my Nutanix gear (duh!) but I have some physical servers which wont be end of life for 12 months, can I continue using them with Nutanix?

Nutanix: We have several options:

a) If the hardware is on our Software-only hardware compatibility list (HCL), it’s possible you can purchase SW-only licenses and deploy Nutanix on your existing hardware.

b) Use Nutanix Acropolis Block Services (ABS) to provide highly available scale out storage to your physical server via iSCSI.

ABS was released in 2015 and supports SCSI-3 persistent reservations for shared storage-based Windows clusters, which are commonly used with Microsoft SQL Server and clustered file servers.

ABS supports several use cases, including:

  • iSCSI for Microsoft Exchange Server.
  • Shared storage for Linux-based clusters
  • Windows Server Failover Clustering (WSFC).
  • SCSI-3 persistent reservations for shared storage-based Windows clusters
  • Shared storage for Oracle RAC environments.
  • Bare-metal environments.

Therefore ABS allows you to re-use your existing hardware to maximise your return on investment (ROI) while getting the benefits of ADSF. Once the hardware is end of life, the storage already on the Nutanix cluster can be quickly presented to a VM so the workload will benefit from the full Nutanix HCI experience.

Future Capabilities:

In late 2017, Nutanix announced Nutanix Acropolis Compute Cloud (AC2) which will provide the ability to have true compute-only nodes in a Nutanix cluster as shown below.

I reluctantly mention this upcoming capability because I do not want to see customers go back to a 3-teir model or think that HCI isn’t the way forward because it is. That’s not what compute-only is about.

This capability is specifically designed to work around the niche circumstances where a software vendor such as Oracle, are extorting customers from a licensing perspective and it’s desirable to maximise the CPU cores the application can use.

Let me have a quick rant and put an end to the nonsense before it gets out of hand:

IT IS NOT FOR GENERAL VM USE!

NO ITS NOT FOR PERFORMANCE REASONS.

NO NUTANIX IS NOT MOVING BACK TO A 3-TIER COMPUTE+STORAGE MODEL.

HCI WITH NUTANIX IS STILL THE WAY FORWARD

Summary:

Nutanix provides excellent scalability at the CPU/RAM level for both virtual and physical workloads. In rare circumstances where physical servers are a real (or likely just a perceived) requirement, ABS can be used while Nutanix will soon also provide Compute-only for AHV customers to ensure licensing value is maximised for those rare cases.

Back to the Scalability, Resiliency and Performance Index.