Example Architectural Decision – HA Admission Control Policy with Software licensing constaints

High Availability Admission Control Setting & Policy with a Software Licensing Constraint

Problem Statement

The customer has a requirement to virtualize “Application X” which is currently running on physical servers. The customer is licensed for a maximum of 32 cores and the software vendor has strict licensing restrictions which do not recognize the use of DRS rules to restrict virtual machines to a sub-set of hosts within a cluster.

The application is Tier 1, and requires maximum availability. A capacity planner assessment has been conducted and found 32 cores and 256Gb RAM is sufficient to run all servers.

The servers requirements vary greatly from 1vCPU/2GB RAM to 8vCPU/64GB Ram with the bulk of the VMs 2vCPU or less with varying RAM sizes.

What is the most suitable hardware configuration and HA admission control policy / setting  that complies with the licensing restrictions while ensuring N+1 redundancy and minimizing the change of poor application performance?

Assumptions

1. None

Constraints

1. Software vendor has strict licensing requirements
2. Only 32 cores are licensed and the customer has no budget for further licenses
3. DRS rules cannot be used to isolate VMs onto one or more hosts due to software licensing agreement

Motivation

1. Ensure maximum availability for the Tier 1 application/s
2. Ensure optimal performance for Tier 1 application/s

Architectural Decision

Purchase a total of three (3) x Two (2) Way Servers, with 8 core CPUs and 128GB Ram each and form a cluster of three nodes.

For the HA Admission control setting use “Enable – Do not power on virtual machines that violate availability constraints”

For the HA admission control policy use “Specify a Failover Host” and select the third host in the cluster. (Leaving two active hosts in the cluster).

Justification

1. Enabling strict admission control is critical to ensure the required level of availability for the Tier 1 application
2. Ensure maximum CPU scheduling efficiency by having two hosts active within the cluster running virtual machines as opposed to a single large host
3. Having 2 active hosts in the cluster allows DRS some flexibility to load balance to resolve contention compared to using a single large 32 core host
4. N+1 redundancy is achieved as one host can fail and the “fail-over” host will become active and be able to take the failed hosts workloads without performance degrading
5. As only 32 cores ( 2 servers with 16 cores each) are active at any one time, the solution complies with the licensing constraint
6. Using CPUs with smaller numbers of cores (such as 5 x 2 way servers with 4 cores per socket) would result in larger VMs not fitting within NUMA nodes and potentially impacting memory performance. Although, with vNUMA in vSphere 5.0 this would be less of an issue.
7. All VMs will fit within a NUMA node thus giving the VMs maximum performance without the requirement for vNUMA which is only available in vSphere 5.0 or later
8. The compute resource supplied by the proposed cluster is sufficient to run the workloads as per the capacity planner assessment.

Implications

1. Additional networking and storage ports for three hosts as opposed to a two host cluster
2. If additional compute is required in the cluster, additional software licenses would need to be purchased. Alternativley if the application servers were redesigned to use a scale out methodology (especially for VMs with 4-8vCPUs) it would likley result in higher overcommitment ratios without significant contention and better utilization of the existing licensed cores
3. One host is sitting as a hot standby not servicing customer workloads and may be considered to be “waste”

Alternatives

1. Use 2 x 4 way 8 core ESXi hosts (32 cores per host) and set HA admission control to specify a fail over host
2. Use 5 x 2 Way 4 core ESXi hosts (8 cores per host) and set HA admission control to specify a fail over host

The Below is a basic diagram of the proposed solution.

FailoverHost

*Post updated February 11th to correct an error.

Example VMware vNetworking Design w/ 2 x 10GB NICs (IP based or FC/FCoE Storage)

I have had a large response to my earlier example vNetworking design with 4 x 10GB NICs, and I have been asked, “What if I only have 2 x 10GB NICs”, so the below is an example of an environment which was limited to just two (2) x 10GB NICs and used IP Storage.

If your environment uses FC/FCoE storage, the below still applies and the IP storage components can simply be ignored.

Requirements

1. Provide high performance and redundant access to the IP Storage (if required)
2. Ensure ESXi hosts could be evacuated in a timely manner for maintenance
3. Prevent significant impact to storage performance by vMotion / Fault Tolerance and Virtual machines traffic
4. Ensure high availability for all network traffic

Constraints

1. Two (2) x 10GB NICs

Solution

Use one dvSwitch to support all VMKernel and virtual machine network traffic and use “Route based of Physical NIC Load” (commonly refereed to as “Load Based teaming”).

Use Network I/O control to ensure in the event of contention that all traffic get appropriate network resources.

Configure the following Network Share Values

IP Storage traffic : 100
ESXi Management: 25
vMotion: 25
Fault Tolerance : 25
Virtual Machine traffic : 50

Configure two (2) VMKernel’s for IP Storage and set each on a different VLAN and Subnet.

Configure VMKernels for vMotion (or Multi-NIC vMotion), ESXi Management and Fault Tolerance and set to active on both 10GB interfaces (default configuration).

All dvPortGroups for Virtual machine traffic (in this example VLANs 6 through 8) will be active on both interfaces.

The above utilizes LBT to load balance network traffic which will dynamically move workload between the two 10GB NICs once one or both network adapters reach >=75% utilization.

vNetworking BLOG 2x10gb

Conclusion

Even when your ESXi hosts only have two x 10Gb interfaces, VMware provides enterprise grade features to ensure all traffic (including IP Storage) can get access to sufficient bandwidth to continue serving production workloads until the contention subsides.

This design ensures that in the event a host needs to be evacuated, even during production hours, that it will complete in the fastest possible time with minimal or no impact to production. The faster your vMotion activity completes, the sooner DRS can get your cluster running as smoothly as possible, and in the event you are patching, the sooner your maintenance can be completed and the hosts being patched are returned to the cluster to serve your VMs.

Related Posts

1. Example Architectural Decision – Network I/O Control for ESXi Host using IP Storage (4 x 10 GB NICs)
2. Network I/O Control Shares/Limits for ESXi Host using IP Storage

Example Architectural Decision – Enhanced vMotion Compatiblity

Problem Statement

The virtual infrastructure is required to scale over time as demand for compute and/or availability increases.
When purchasing additional ESXi hosts over an expected ESXi host hardware life of >=3 year it is unlikely that the exact make/model of server or CPU type will be available. The solution needs to ensure full functionality across ESXi hosts (specifically vMotion) which may not be exactly the same hardware, although all processors will always be from the same vendor.

How can the vSphere cluster/s be configured for maximum flexibility without significant impact to Virtual machine performance?

Assumptions

1. All CPU types will be Intel or AMD but not a mix of the two
2. All CPUs will have a supported EVC mode

Motivation

1. Ensure full functionality between ESXi hosts whos Intel CPUs may not match exactly
2. Prevent having to purchase large volumes of identical hardware at one time
3. Allow vSphere clusters to be expanded over time using similar, but not identical hardware although maintaining the same CPU make.

Architectural Decision

Enable EVC and maintain it at the maximum supported EVC level for all ESXi hosts in each vSphere cluster.

Justification

1. vMotion is a requirement for the cluster/s to ensure maximum flexibility
2. It is essential to avoid downtime where possible. EVC ensures VMs can be vMotion’d to newer hosts for the purpose of expanding a cluster, OR alternatively, to newer hardware so older hardware can be decommissioned without impact to the VM.
3. The EVC level for the cluster can be increased without downtime
4. Having EVC disabled would require virtual machines being migrated to new hardware have downtime where CPU types are not similar
5. If EVC was not enabled, newer hardware may be placed into a new (smaller) cluster/s and this would add an unnecessary HA overhead as well as reduce the efficiency of DRS

Implications

1. Where the EVC level for a cluster is increased, virtual machines will not leverage new CPU features unmasked by EVC until the next reboot
2. In the event new hardware is added to a cluster and the new hardware is compatible with a higher EVC mode, a virtual machine which has a workload which can benefit from CPU features masked by the existing EVC mode may not perform at the optimal level until older hardware is removed from the cluster and the EVC mode increased.

Alternatives

1. Leave EVC disabled and where CPU types are not compatible to vMotion, shutdown the guest OS for migrations.