Sizing infrastructure based on vendor Data Reduction assumptions – Part 1

One of the most common mistakes people make when designing solutions is making assumptions. Assumptions in short are things an architect has failed to investigate and/or validate which puts a project at risk of not delivering the desired business outcome/s.

A great example of a really bad assumption to make is what data reduction ratio a storage platform will deliver.

But what if a vendor offers a data reduction guarantee and promises to give you as much equipment required if the ratio is not achieved, you’re protected right? The risk of your assumption being wrong is mitigated with the promise of free storage. Hooray!

Let’s explore this for a minute using an example of one of the more ludicrous guarantees going around the industry at the moment:

A guarantee of 10:1 data reduction!

Let’s say we have 100TB of data, that means we’d only need 10TB right? This might only be say, 4RU of equipment which sounds great!

After deployment, we start migrating and we only get a more realistic 2:1 data reduction, at which point the project stalls due to lack of capacity.

I go back to the vendor and lets say, best case scenario they agree on the spot (HA!) to give you more equipment, its unlikely to be delivered in less than 4 weeks.

So your project is delayed a minimum of 4 weeks until the equipment arrives. You now need to go through your change control process and if you’re doing this properly it would be documented with detailed steps on how to install the equipment, including appropriate back out strategies in the event of issues.

Typically change control takes some time to prepare, go through approvals, documentation etc especially in larger mission critical environments.

When installing any equipment you should also have documented operational verification steps to ensure the equipment has been installed correctly and is highly available, performing as expected etc.

Now that the new equipment is installed, the project continues and all 100TB of your data has been migrated to the new platform. Hooray!

Now let’s talk about the ongoing implications of the assumption of 10:1 data reduction only resulting in a much more realistic 2:1 ratio.

We now have 5x more equipment than we expected, so assuming the original 10TB was 4RU, we would now have 20RU of equipment which is taking up valuable real estate in our datacenter, or which may have required you to lease another rack in your datacenter.

If the product you purchased was a SAN/NAS, you now have lower IOPS/GB as you have just added a bunch more disk shelves to the existing controllers. This is because the controllers have a finite amount of performance, and you’ve just added more drives for it to manage. More drives on a traditional two controller SAN/NAS is only a good thing if the controller is not maxed out, and with flash ever increasing in performance, Controllers will be assuming they are not already the bottleneck.

If the product was HCI, now you require considerably more network interfaces. Depending on the HCI platform, you may require more hypervisor licensing, further increasing CAPEX and OPEX.

Depending on the HCI product, can you even utilise the additional storage without changing the virtual machines configuration? It might sound silly but some products don’t distribute data throughout the cluster, rather having mirrored objects so you may even need to create more virtual disks or distribute the VMs to make use of the new capacity.

Then you need to consider if the HCI product has any scale limitations, as these may require you to redesign your solution.

What about operational expenses? We now have 5x more equipment, so our environmental costs such as power & cooling will increase significantly as will our maintenance windows where we now have to patch 5x more hypervisor nodes in the case of HCI.

Typically customers no longer size for 3-5 years due to the fact HCI is becoming the platform of choice compared to SAN/NAS. This is great but when your data reduction assumption is wrong, (in this example off by 5x) the ongoing impact is enormous.

This means as you scale, you need to scale at 5x the rate you originally designed for. That’s 5x more rack units (RU), 5x more Power, 5x more cooling required, potentially even 5x more hypervisor licensing.

What does all of this mean?

Your Total Cost of Ownership (TCO) and Return on Investment (ROI) goes out the window!

Interestingly, Nutanix recently considered offering a data reduction guarantee and I was one of many who objected and strongly recommended we not drop to the levels of other vendors just because it makes the sales cycle easier.

All of the reasons above and more were put to Nutanix product management and they made the right decision, even though Nutanix data reduction (and avoidance) is very strong, we did not want to put customers in a position where their business outcomes were potentially at risk due to assumptions.

Summary:

While data reduction is a valuable part of a storage platform, the benefits (data reduction ratio) can and do vary significantly between customers and datasets. Making assumptions on data reduction ratios even when vendors provide lots of data showing their averages and providing guarantees, does not protect you from potentially serious problems if the data reduction ratios are not achieved.

In Part 2, I will go through an example of how misleading data reduction guarantees can be.

What’s .NEXT 2016 – Enhanced & Adaptive Compression

There are so many “under the cover” capabilities of the Acropolis Distributed Storage Fabric (ADSF) which have been designed and built not for short term marketing “checkboxes” but with a long term vision in mind.

As a result, Nutanix has been able to continually innovate and stay ahead of the HCI market while building a next generation platform (including the Acropolis Hypervisor, AHV) for the enterprise cloud.

Nutanix is also 100% software defined which makes adding new features and enhancing existing features possible even for hardware which is several years old.

As a result of the forward looking development of ADSF, it has allowed Nutanix to lead in the SDS space with features like Compression, Deduplication and Erasure Coding (EC-X).

In-line Compression is recommended for most workloads including business critical applications such as Oracle, SQL and Exchange and typically provides not only excellent capacity savings but an increased effective SSD capacity which results in higher performance. Compressing data on the capacity tier (not just flash tier) also helps improve performance and lowers the cost per GB of storage.

As of the next release, the compression functionality has been enhanced to support compressed and uncompressed slices in the same extent groups which for those of you not familiar with ADSF, an “Extent Group” is a group of “Extents” in which data is stored.

In previous generations of ADSF, regardless of if ADSF got good compression or not – all the data for a virtual disk (vdisk) residing in a container with compression enabled will have all of its data compressed. This can causes unnecessary overheads especially in cases where compression savings are minimal, such as for already compressed data such as Video or image files (e.g.: JPG).

This is one reason why it’s important that data reduction features such as compression (and Dedupe/Erasure Coding) can be turned off for workloads where benefits are minimal.

Previously in ADSF, compressed and uncompressed data was not supported within the same extent group which resulted in the cluster (Curator) having the added overhead of moving extents from one extent group to another even for data with low/no compression benefits.

This unnecessary overhead has now been removed which means less background tasks (overheads) resulting in lower CPU utilization by the Nutanix Controller VM (CVM) and better overall compression performance.

Secondly, Nutanix will be moving to the LZ4 group of algorithms which has two variants, LZ4 and LZ4H. LZ4H is really exciting because it gets nearly as much compression as Zlib while having a similar CPU cost but can decompress at the speed of LZ4. LZ4 by itself is marginally superior to Snappy in the common case, but the LZ4H makes this a very attractive choice.

This allows ADSF to do tiered compression – so cold data compressed with LZ4 can be further compressed with LZ4H giving higher compression ratios.

Also some good news for existing customers, this enhanced compression will be included in the next major AOS update which can be deployed via One-Click upgrade without any downtime or the requirement to reformat the drives, that’s true software defined storage.

Stay tuned for an upcoming blog showing the before and after compression savings on the same dataset.

Summary:

The upcoming releases of Acropolis OS (AOS) will provide:

  1. Higher compression savings
  2. Lower CVM overheads
  3. Dramatically reduced background file system maintenance tasks
  4. Enhanced compression will be included in the next major AOS one click upgrade!

Related .NEXT 2016 Posts

The truth about Storage Data efficiency ratios.

We’ve all heard the marketing claims from some storage vendors about how efficient their storage products are. Data efficiency ratios of 40:1 , 60:1 even 100:1 continue to be thrown around as if they are amazing, somehow unique or achieved as a result of proprietary hardware.

Let’s talk about how vendors may try to justify these crazy ratios:

For many years, Storage vendors have been able to take space efficient copies of LUNs, Datastores, Virtual Machines etc which rely on snapshots or metadata. These are not full copies and reporting this as data efficiency is quite mis-leading in my opinion as this is and has been for many years Table stakes.

Be wary of vendors encouraging (or requiring) you configure more frequent “backups” (which are after all just Snapshots or metadata copies) to achieve the advertised data efficiencies.

  • Reporting VAAI/VCAI clones as full copies

If I have a VMware Horizon View environment, It makes sense to use VAAI/VCAI space efficient clones as they provide numerous benefits including faster provisioning, recompose and use less space which leads to them being served from cache (making performance better).

So if I have an environment with just 100 desktops deployed via VCAI, You have a 100:1 data reduction ratio, 1000 desktops and you have 1000:1. But this is again Table stakes… well sort of because some vendors don’t support VAAI/VCAI and others only have partial support as I discuss in Not all VAAI-NAS storage solutions are created equal.

Funnily enough, one vendor even offloads what VAAI/VCAI can do (with almost no overhead I might add) to proprietary hardware. Either way, while VAAI/VCAI clones are fantastic and can add lots of value, claiming high data efficiency ratios as a result is again mis-leading especially if done so in the context of being a unique capability.

  • Compression of Highly compressible data

Some data, such as Logs or text files are highly compressible, so ratios of >10:1 for this type of data are not uncommon or unrealistic. However consider than if logs only use a few GB of storage, then 10:1 isn’t really saving you that much space (or money).

For example a 100:1 data reduction ratio of 100MB of logs is only saving you ~10GB which is good, but not exactly something to make a purchasing decision on.

Also compression of databases which lots of white space also compress very well, so the larger the Initial size of the DB, the more it will compress.

The compression technology used by storage vendors is not vastly different, which means for the same data, they will all achieve a similar reduction ratio. As much as I’d love to tell you Nutanix has much better ratios than Vendors X,Y and Z, its just not true, so I’m not going to lie to you and say otherwise.

  • Deduplication of Data which is deliberately duplicated

An example of this would be MS Exchange Database Availability Groups (DAGs). Exchange creates multiple copies of data across multiple physical or virtual servers to provide application and storage level availability.

Deduplication of this is not difficult, and can be achieved (if indeed you want to dedupe it) by any number of vendors.

In a distributed environment such as HCI, you wouldn’t want to deduplicate this data as it would force VMs across the cluster to remotely access more data over the network which is not what HCI is all about.

In a centralised SAN/NAS solution, deduplication makes more sense than for HCI, but still, when an application is creating the duplicate data deliberately, it may be a good idea to exclude it from being deduplicated.

As with compression, for the same data, most vendors will achieve a similar ratio so again this is table stakes no matter how each vendor tries to differentiate. Some vendors dedupe at more granular levels than others, but this provides diminishing returns and increased overheads, so more granular isn’t always going to deliver a better business outcome.

  • Claiming Thin Provisioning as data efficiency

If you have a Thin Provisioned 1TB virtual disk and you only write 50GB to the disk, you would have a data efficiency ratio of 20:1. So the larger you create your virtual disk and the less data you write to it, the better the ratio will be. Pretty silly in my opinion as Thin Provisioning is nothing new and this is just another deceptive way to artificially improve data efficiency ratios.

  • Claiming removal of zeros as data reduction

For example, if you create an Eager Zero Thick VMDK, then use only a fraction, as with the Thin Provisioning example (above), removal of zeros will obviously give a really high data reduction ratio.

However Intelegent storage doesn’t need Eager Zero Thick (EZT) VMDKs to give optimal performance nor will they write zeros to begin with. Intelligent storage will simply store metadata instead of a ton of worthless zeros. So a data reduction ratio from a more intelligent storage solution would be much lower than a vendor who has less intelligence and has to remove zeros. This is yet another reason why data efficiency (marketing) numbers have minimal value.

Two of the limited use cases for EZT VMDKs is Fault Tolerance (who uses that anyway) and Oracle RAC, so removal of zeros with intelligent storage is essentially moot.

Summary:

Data reduction technologies have value, but they have been around for a number of years so if you compare two modern storage products, you are unlikely to see any significant difference between vendor A and B (or C,D,E,F and G).

The major advantage of data reduction is apparent when comparing new products with 5+ year old technology. If you are in this situation where you have very old tech, most newer products will give you a vast improvement, it’s not unique to just one vendor.

At the end of the day, there are numerous factors which influence what data efficiency ratio can be achieved by a storage product. When comparing between vendors, if done in a fair manner, the differences are unlikely to be significant enough to sway a purchasing decision as most modern storage platforms have more than adequate data reduction capabilities.

Beware: Dishonest and mis-leading marketing about data reduction is common so don’t get caught up in a long winded conversations about data efficiency or be tricked into thinking one vendor is amazing and unique in this area, it just isn’t the case.

Data reduction is table stakes and really shouldn’t be the focus of a storage or HCI purchasing decision.

My recommendation is focus on areas which deliver operational simplicity, removes complexity/dependancies within the datacenter and achieve real business outcomes.

Related Posts:

1. Sizing infrastructure based on vendor Data Reduction assumptions – Part 1

2. Sizing infrastructure based on vendor Data Reduction assumptions – Part 2

3.Deduplication ratios – What should be included in the reported ratio?