Example Architectural Decision – Datastore (LUN) and Virtual Disk Provisioning

Problem Statement

In a vSphere environment, What is the most suitable disk provisioning type to use for the LUN and the virtual machines to ensure minimum storage overhead and optimal performance?

Requirements

1. Ensure optimal storage capacity utilization
2. Ensure storage performance is both consistent & maximized

Assumptions

1. vSphere 4.1 or later
2. VAAI is supported and enabled
3. Array level data replication is being used throughout the environment
4. Monitoring of the environment (including vSphere and Storage) is a manual process
5. The time frame to order new hardware (eg: New Disk Shelves) is a minimum of 3 months

Constraints

1. Block based storage

Motivation

1. Increase flexibility
2. Ensure physical disk space is not unnecessarily wasted

Architectural Decision

“Thick Provision” the LUN at the Storage layer and “Thin Provision” the virtual machines at the VMware layer

Justification

1. Simplified capacity management as only one layer (vSphere layer) needs to be monitored for capacity
2. The Free space shown by vSphere is actual usable storage
3. Reduces the chance of an “Out of Space” condition
4. Increases flexibility as all unused capacity of all datastores remains available
5. Creating VMs with “Thick Provisioned – Eager Zeroed” disks would increase the provisioning time
6. Creating VMs as “Thick Provisioned” (Eager or Lazy Zeroed) does not provide any significant benefit but adds a serious capacity penalty
7. Using Thin Provisioned virtual machines minimizes storage replication traffic on creation of virtual machines
8. Using Thick Provisioned LUNs reduces the requirement for fast turn around times for purchasing additional capacity
9. Monitoring is essential to successfully and safely use “Thin on Thin”

Alternatives

1.  Thin Provision the LUN and thick provision virtual machine disks (VMDKs)
2.  Thick provision the LUN and thick provision virtual machine disks (VMDKs)
3.  Thin provision the LUN and thin provision virtual machine disks (VMDKs)

Implications

1. No storage over commitment can occur on the physical array
2. The storage “consumed” will be reported differently between the vSphere Administrator and the Storage Administrator. The vSphere Administrator will see the true utilization, whereas the SAN administrator will see the “Consumed” & “Provisioned” values as the same
3. It is possible for a datastore to become overcommited, and as a result if not monitored the datastore may run out of free space which would result in an outage.

Related Articles

1. Datastore (LUN) and Virtual Disk Provisioning (Thin on Thin)

vmware_logo_ads

Example Architectural Decision – Storage Protocol Choice for a VMware View Environment using Linked Clones

Problem Statement

What is the most suitable storage protocol for a Virtual Desktop (VMware View) environment using Linked Clones?

Assumptions

1.  The Storage Array supports NFS native snapshot offload
2. VMware View 5.1 or later

Motivation

1. Minimize recompose (maintenance) window
2. Minimize impact on the storage array and HA/DRS cluster during recompose activities
3. Reduce storage costs where possible
4. Simplify the storage design eg: Number/size of Datastores / Storage Connectivity
5. Reduce the total solution cost eg: Number of Hosts required

Architectural Decision

Use Network File System (NFS)

Justification

1. Using native NFS snapshot (VAAI) offloads the creation of VMs to the array, therefore reducing the compute overhead on the ESXi hosts
2. Native NFS snapshots require much less disk space than traditional linked clones
3. Recomposition times are reduced due to the offloading of the cloning to the array
4. More virtual machines can be supported per NFS datastore compared to VMFS datastores (200+ for NFS compared to max recommended of 140, but it is generally recommended to design for much lower numbers eg: 64 per VMFS)
5. Recompositions/Refresh activities can be performed during business hours, or at Logoff (for Refresh) with minimal impact to the HA/DRS cluster, thus giving more flexibility to maintain the environment
6. Avoid’s potential VMFS locking issues – although this issue is not as important for environments using vSphere 4.1 onward with VAAI compatible arrays
7. When sizing your storage array, less capacity is required. Note: Performance sizing is also critical
8. The cost of a FC Storage Area Network can be avoided
9. Fewer ESXi hosts may be required as the compute overhead of driving cloning has been removed

Implications

1.  In the current release, 5.1, View Storage Accelerator (formally Content Based Read Cache or CBRC) is not supported when using Native NFS snapshots (VAAI)
2. Also in the current release 5.1, “Use native NFS snapshots (VAAI) is in “Tech Preview” – This is rumored to change in View 5.2

Alternatives

1. Use VMFS (block) based datastores and have more VMFS datastores – Note: Recompose activity will be driven by the host which adds an overhead to the cluster.