Is VAAI beneficial with Virtual Storage Appliance (VSA) based solutions ?

I saw a tweet recently (below) which inspired me to write this post as there is still a clear misunderstanding of the benefits VAAI provides (even with Virtual Storage Appliances).

vaaionvsatweet2

I have removed the identity of the individual who wrote the tweet and the people who retweeted this as the goal of this post is solely to correct what I believe is mis-information.

My interpretation of the tweet was (and remains) if a solution uses a Virtual Storage Appliance (VSA) which resides on the ESXi host then VAAI is not providing any benefits.

My opinion on this topic is:

Compared to a traditional centralised NAS (such as a Netapp or EMC Isilon) providing NFS storage with VAAI-NAS support, a Nutanix or VSA solution has exactly the same benefits from VAAI!

My 1st reply to the tweet was:

vaaionvsatweetconvojoshreply2

The test I was referring to with Netapp OnTap Edge can be found here which was posted in Jan 2013, well prior to my joining Nutanix when I was working for IBM where I had been evangelising VAAI/VCAI based solutions for a long time as VAAI/VCAI provides significant value to VMware customers.

The following shows the persons initial reply to my tweet.

vaaionvsatweetconvo32

I responded with the below mentioning I will do a blog which is what you’re reading now.

I went onto provide some brief replies as shown below.

repliesdetail

The main comments from this persons tweets I would summarize (rightly or wrongly) below:

  • VAAI is designed only to offload functions externally (or off the ESXi host)
  • He/She had not seen any proof of performance advantages from VAAI on VSAs
  • Its broken logic to use VAAI with a VSA

Firstly, I would like comment on VAAI being designed to offload functions externally (or off the ESXi host). I don’t disagree VAAI has some functions designed to offload to the (centralised) array but VAAI also has numerous functions which are designed to bring other efficiencies to a vSphere environment.

An example of a feature designed to offload to a central array is the “XCOPY” primitive.

A simple example of what “XCOPY” or Extended Copy provides is offloading a Storage vMotion on block based storage (i.e.: VMFS over iSCSI,FC,FCoE not NFS) to the array so the ESXi host does not have to process the data movement.

This VAAI primitive would likely be of little benefit in a VSA environment where the storage is presented is block based and Storage DRS for example was used. The data movement would be offloaded from ESXi to the VSA running on ESXi and host would still be burdened with the SvMotion.

However XCOPY is only one of the many primitives of VAAI, and VAAI does alot more than just offload Storage vMotions.

For the purpose of this post, I will be discussing VAAI with Nutanix whos Software defined storage solution runs in a VM on every ESXi host in a Nutanix cluster.
Note: This information is also relevant to other VSAs which support VAAI-NAS.

So what benefit does VAAI provide to Nutanix or a VSA solution running NFS?

Nutanix deploys by default with NFS and supports the VAAI-NAS primitives which are:

  • Full File Clone
  • Fast File Clone
  • Reserve Space
  • Extended Statistics

Note: XCOPY is not supported on NFS, importantly and specifically speaking for Nutanix it is not required as SvMotion will be rarely if ever used with Nutanix solutions.

See my post “Storage DRS and Nutanix – To use, or not to use, that is the question?” for more details on why SvMotion is rarely needed when using Nutanix.

For more details of VAAI primitives, Cormac Hogan (@CormacJHogan) wrote an excellent post which can be found here.

Now here is an example of a significant performance benefits of VAAI with Nutanix.

Lets look at Clone of a VM on a Nutanix platform, the VMs details are below.admin01vm

The VM I have used for this test resides on a datastore called “Management” (as per the above image) which presented via NFS and has VAAI (Hardware Acceleration) enabled as shown below.datastore

Now if I do a simple clone of a VM (as shown below) if the VM is turned on, VAAI-NAS is bypassed as the “Fast File Clone” primitive only works on VMs which are powered off.

clone

So a simple way to test the performance benefits of VAAI on any platform (including Hyper-converged such as Nutanix, a Virtual Storage Appliance (VSA) such as Netapp Ontap Edge or traditional centralised SAN or NAS) is to clone a VM while powered on then shut-down the VM and clone it again.

I performed this test and the first clone with the VM powered on started at 1:17:23 PM and finished at 1:26:12 PM, so a total of 8 mins 49 seconds.

Next I shut down the VM and repeated the clone operation.cloneresults

As we can see in the above screen capture from the 2nd clone started at 1:26:49 PM and finished at 1:26:54 PM, so a total of 5 seconds.

The reason for the huge difference in the speed of the two clones is because VAAI-NAS “Fast File Clone” primitive offloaded the 2nd clone to the Nutanix platform (which runs as a VM on the ESXi host) which has intelligently cloned the VM (using metadata resulting in almost zero data creation) as opposed to 1st clone where VAAI-NAS was not used which resulted in the hypervisor and storage solution having to read 11.18GB of data (being the source VM – Admin01) and write a full copy of the same data resulting in effectively >22GB of data movement in the environment.

Now from a capacity savings perspective, a simple way to demonstrate the capacity savings of VAAI on any platform is to clone a VM multiple times and compare the before and after datastore statistics.

Before I performed this test I captured a baseline of the Management datastore as shown below.

BeforeCloningCapacityVMcount

The above highlighted areas show:

  • Virtual Machines and Templates as 83
  • Capacity 8.49TB
  • Provisioned Space 7.09TB
  • Free Space 7.01TB

I then cloned the Admin01 VM a total of 7 times.clone7vmsrecenttasks

Immediately following the last clone completing I took the below screen shot of the Management datastores statistics.

AfterCloningCapacityVMcount

The above highlighted areas in the updated datastore summary show:

  • Virtual Machines and Templates INCREASED by 7 to 90 (as I cloned 7 VMs)
  • Capacity remained the same at 8.49TB
  • Provisioned Space INCREASED to 7.29TB as we cloned 7 x ~40Gb VMs (Total of ~280GB)
  • Free Space REMAINED THE SAME at 7.01TB due to VAAI-NAS Fast File Clone primitive working with the Nutanix Distributed File System.

So VAAI-NAS allowed a VM of ~11GB of used storage (~40GB provisioned) to be cloned without using any significant additional disk space and the clones were each done in between 5 and 7 seconds each.

So some of the benefits VAAI-NAS provides to Nutanix (which some people would term as a VSA type solution) include:

  • Near instant VM cloning via vSphere Client/s (as shown above)
  • Near instant Horizon View Linked Clone deployments (VCAI) – Similar to example shown.
  • Near instant vCloud Director clones (via FAST Provisioning) – Similar to example shown.
  • Major capacity savings by using Intelligent cloning rather than Full Clones (As shown above)
  • Lower CPU overhead for both ESXi hosts AND Nutanix Controller VM (CVM)
  • Ability to create EagerZeroThick VMDKs on NFS (e.g.: To support Fault Tolerance & clustered workloads such as Oracle RAC)
  • Enhanced ability to get statistics on file sizes , capacity usage etc on NFS

In Summary:

Overall I would say that VMware have developed an excellent API in VAAI and Nutanix along with VSA providers having support for VAAI provides major advantages and value to our joint customers with VMware.

It would be broken logic NOT to leverage the advantages of VAAI regardless of storage type (VSA, Nutanix or traditional centralized SAN/NAS) and for the vast majority of vSphere deployments, any storage solution not supporting (or having issues/bugs with) VAAI will have significant downsides.

I am looking forward to ongoing developments from VMware such as vVols and VASA 2.0 to continue to enhance storage of vSphere solutions in the future.

I hope customers and architects now have the correct information to make the most effective design and purchasing recommendations to meet/exceed customer requirements.

VMworld then and now! (2013 vs 2014)

Last year I did an interview with Eric Sloof @esloof of VMworld TV (below) where we discussed the basics (or the 101) of Nutanix and this was the theme of questions from attendees throughout the Solutions Exchange.

Meet the team behind Nutanix VMworld 2013 – https://www.youtube.com/watch?v=T56KBaB3OUk

Jump forward to this years VMworld (2014) and I was lucky enough to get an opportunity to interview with  VMworld TV again. Eric and I agreed that we didn’t want a simple repeat of last years interview, but talk about more benefits of the platform (or the 201 level).

Nutanix speaks to VMworld TV about their exciting new products – https://t.co/brA15Zgcql

The interesting part of VMworld 2014 and my time on the booth, the theme of questions from attendees was significantly different from last year, and in large part was focused on Business Critical Applications and Server workloads from both prospective and existing customers.

One of my focusses over the last year has been Business Critical Applications and improving the Nutanix platform for these workloads. I am proud to say we (Nutanix) has made significant improvements in this area and we have a strong offering especially with the new NX-8150 platform which my team were responsible for designing.

I am looking forward to interviewing at next years VMworld and covering the Advanced/Expert level topics (301 level) with Eric and the fantastic VMworld TV crew.

Virtualizing Business Critical Applications – The Web-Scale Way!

Since joining Nutanix back in July 2013, I have been working on testing the performance and resiliency of a range of virtual workloads including Business Critical Applications on the Nutanix platform. At the time, Nutanix only offered a single form factor (4 nodes in 2RU) which was not always a perfect fit depending on customer requirements.

Fast forward to August 2014 and now Nutanix has a wide range of node types to meet most workload requirements which can be found here.

The only real gap in the node types was a node which would support applications with large capacity requirements and also have a very large active working set which requires consistent low latency and high performance regardless of tier.

So what do I mean when I say “Active working Set”. I would define this as a data being regularly accessed by the VM/s, for example a file server may have 10TB of data, but users only access 10% on a regular basis. This 10% I would classify as the Active Working Set.

Now back to the topic at hand, The reason I am writing this post is because this has been a project I have been working towards for some time, and I am very excited about this product being released to the market. I have no doubt it will further increase the already fast up take of the Web-scale solutions and provide significant value and opportunities to new and existing customers wanting to simplify their datacenter/s and standardize on Nutanix Web-scale architecture.

Along with many others at Nutanix, we proposed a new node type (being the NX-8150), which has been undergoing thorough testing in my team (Solutions & Performance Engineering) for some time and I am pleased to say is being officially released (very) soon!

nx8050

What is the NX-8150?

A 1 Node per 2RU platform with the following specifications:

* 2 CPU Sockets with two CPU options (E5-2690v2 [20 cores / 3.0 GHz] OR E5-2697v2 [24 cores / 2.7 GHz]
* 4 x Intel 3700 Series SSDs (ranging from 400GB to 1.6TB ea)
* 20 x 1TB SATA HDDs
* Up to 768GB RAM
* Up to 4 x 10GB NICs
* 4 x 1GB NICs
* 1 x IPMI (Out of band Management)

What is the use case for the NX-8150?

Simply put, Applications which have high CPU/RAM requirements with large active working sets and/or the requirement for consistent high performance over a large data set.

Some examples of these applications include:

* Microsoft Exchange including DAG deployments
* Microsoft SQL including Always on Availability Groups
* Oracle including RAC
* SAP
* Microsoft Sharepoint
* Mixed Production Server Workloads with varying Capacity & I/O requirements

The NX-8150 is a great platform for the above workloads as it not only has fast CPUs and up to a massive 768GB of RAM to provide substantial compute resources to VMs, but also up to a massive 6.4TB of RAW SSD capacity for Virtual machines with high IO requirements. For workloads where peak performance is not critical the NX-8150 also provides solid consistent performance across the “Cold Tier” provided by the 20 x 1TB HDDs.

As with all Nutanix nodes, Intelligent Life-cycle management (ILM) maximizes performance by dynamically migrating hot data to SSD and cold data to SATA to provide the best of both worlds being high IOPS and high capacity.

One of the many major advantages of Nutanix Web-Scale architecture is Simplicity and its ability to remove the requirement for application specific silos! Now with the addition of the NX-8150 the vast majority of workloads including Business Critical Applications can be ran successfully on Nutanix, meaning less silos are required, resulting in a simpler, more cost effective, scalable and resilient datacenter solution.

Now with a number of customers already placing advanced orders for NX-8150’s to deploy Business Critical Applications, it wont be long until the now common “Virtual 1st” policies within many organisations turns into a “Nutanix Web-Scale 1st” policy!

Stay tuned for upcoming case studies for NX-8150 based Web-Scale solutions!