Example Architectural Decision – Transparent Page Sharing (TPS) Configuration for Virtualized Business Critical Applications (vBCA)

Problem Statement

In a VMware vSphere environment, with future releases of ESXi disabling Transparent Page Sharing by default, what is the most suitable TPS configuration for an environment running Virtualized Business Critical Applications?

Assumptions

1. TPS is disabled by default.
2. Storage is expensive.
3. HA Admission Control policy used is “Percentage of Cluster Resources reserved for HA”
4. vSphere 5.5 or earlier

Requirements

1. Applications must meet strict Service Level Agreements (SLAs)
2. The environment must deliver high consistent performance
3. Minimize the cost of shared storage

Motivation

1. Reduce complexity where possible.
2. Maximize the efficiency of the infrastructure
3. Meet/Exceed SLAs

Architectural Decision

Leave TPS disabled (default) and leave Large Memory pages enabled (default).

Justification

1. Setting 100% memory reservations ensures consistent performance by eliminating the possibility of swapping.
2. The 100% memory reservation also eliminates the capacity usage by the vswap file which saves space on the shared storage as well as reducing the impact on the storage in the event of swapping.
3. RAM is cheaper than Tier 1 storage (which is recommended for vSwap storage to ensure minimal performance impact during swapping) so the increased cost of memory in the hosts is easily offset by the saving in Tier 1 shared storage.
4. Simplicity. Leaving default settings is advantageous from both an architectural and operational perspective.  Example: ESXi Patching can cause settings to revert to default which could negate TPS savings and put a sudden high demand on storage where TPS savings may be expected.
5. TPS savings for vBCA workloads is typically much less than with mixed server or desktop workloads due to the memory requirements for vBCAs being typically much higher.
6. HA admission control will calculate fail-over requirements (when using Percentage of cluster resources reserved for HA) so that performance will be approximately the same in the event of a fail-over due to reserving the full RAM reserved for every VM leading to more consistent performance under a wider range of circumstances.
7. Remove the real or perceived security risk of sensitive information being gathered from other VMs using TPS as described in VMware KB 2080735
8. Many business critical applications such as SAP and MS SQL use in Memory caching, overcommitment of memory could lead to serious degradation in performance.
9. Many business critical applications such as MS SQL claim by default all available RAM in the Virtual Machine, as such, TPS savings would be minimal to none for SQL servers.

Implications

1. Using 100% memory reservations requires ESXi hosts and the cluster be sized at a 1:1 ratio of vRAM to pRAM (Physical RAM) and should include N+1 so a host failure can be tolerated.
2. Potential Increased RAM costs
3. No memory overcommitment can be achieved
4. Potential for lower CPU utilization / overcommitment as RAM may become the first constraint.

Alternatives

1. Use 50% reservation and enable TPS
2. Use no reservation, Enable TPS and disable large pages

Summary

I highly recommend sizing vBCA’s with no memory overcommitment in mind and setting 100% memory reservations for these VMs. By definition, these are “Business Critical” and the requirement of consistent high performance far outweigh potential memory savings!

In the event vBCAs are running in a cluster with no vBCAs such as Server or even Test/Dev where TPS may be enabled or desired, TPS can be enabled along with disabling large pages but vBCAs should always have 100% memory reservation.

Related Articles:

1. Cloud XC Transparent Page Sharing Example Architectural Decisions

2. The Impact of Transparent Page Sharing (TPS) being disabled by default @josh_odgers (VCDX#90)

3. Future direction of disabling TPS by default and its impact on capacity planning –@FrankDenneman (VCDX #29)

4. Transparent Page Sharing Vulnerable, Yet Largely Irrelevant – @ChrisWahl (VCDX#104)

How to Architect a VSA , Nutanix or VSAN solution for >=N+1 availability.

How to architect a VSA, Nutanix or VSAN solution for the desired level of availability (i.e.: N+1 , N+2 etc) is a question I am asked regularly by customers and contacts throughout the industry.

This needs to be addressed in two parts.

1. Compute
2. Storage

Firstly, Compute level resiliency, As a cluster grows, the chances of a failure increases so the percentage of resources reserved for HA should increase with the size of the cluster.

My rule of thumb (which is quite conservative) is as follows:

1. N+1 for clusters of up to 8 hosts
2. N+2 for clusters of >8 hosts but <=16
3. N+3 for clusters of >16 hosts but <=24
4. N+4 for clusters of >24 hosts but <=32

The above is discussed in more detail in : Example Architectural Decision – High Availability Admission Control Setting and Policy

The below table highlights in Green my recommended HA percentage configuration based on the cluster size, up to the current vSphere limit of 32 nodes.

HApercentages

Some of you may be thinking, if my Nutanix or VSAN cluster is only configured for RF2 or FT1 for VSAN, I can only tolerate one node failure, so why am I reserving more than N+1.

In the case of Nutanix, after a node failure, the cluster can restore itself to a fully resilient state and tolerate subsequent failures. In fact, with “Block Awareness” a full 4 node block can be lost (so an N-4 situation) which if this is a requirement, needs to be considered for HA admission control reservations to ensure compute level resources are available to restart VMs.

Next lets talk about the issue perceived to be more complicated, Storage redundancy.

Storage redundancy for VSA, Nutanix or VSAN is actually not as complicated as most people think.

The following is my rule of thumb for sizing.

For N+1 , Ensure you have enough capacity remaining in the cluster to tolerate the largest node failing.

For N+2, Ensure you have enough capacity remaining in the cluster to tolerate the largest TWO nodes failing.

The examples below discuss Nutanix nodes and their capacity, but the same is applicable to any VSA or VSAN solution where multiple copies of data is kept for data protection, as opposed to RAID.

Example 1 , If you have 4 x Nutanix NX3060 nodes configured with RF2 (FT1 in VSAN terms) with 2TB usable per node (as shown below), in the event of a node failure, 2TB is no longer available. So the maximum storage utilization of the cluster should be <75% (6TB) to ensure in the event of any node failure, the cluster can be restored to a fully resilient state.

4node3060

Example 2 , If you have 2 x Nutanix NX3060 nodes configured with RF2 (FT1 in VSAN terms) with 2TB usable per node and 2 x Nutanix NX6060 nodes with 8TB usable per node (as shown below), in the event of a NX6060 node failure, 8TB is no longer available. So the maximum storage utilization of the cluster should be 12TB to ensure in the event of any node failure (including the 8TB nodes), the cluster can be restored to a fully resilient state.

4nodemixed

For environments using Nutanix RF3 (3 copies of data) or VSAN (FT2) the same rule of thumb applies but the usable capacity per node would be lower due to the increased capacity required for data protection.

Specifically for Nutanix environments, the PRISM UI shows if a cluster has sufficient capacity available to tolerate a node failure, and if not the following is displayed on the HOME screen and alerts can be sent if desired.

CapacityCritical

In this case, the cluster has suffered a node failure, and because it was sized suitably, it shows “Rebuild Capacity Available” as “Yes” and advises an “Auto Rebuild in progress” meaning the cluster is performing a fully automated self heal. Importantly no admin intervention is required!

If the cluster status is normal, the following will be shown in PRISM.

CapacityOK

In summary: The smaller the cluster the higher the amount of capacity needs to remain unused to enable resiliency to be restored in the event of a node failure, the same as the percentage of resources reserved for HA in a traditional compute only cluster.

The larger the cluster from both a storage and compute perspective, the lower the unused capacity is required for HA, so as has been a virtualization recommended practice for years….. Scale-out!

Related Articles:

1. Scale Out Shared Nothing Architecture Resiliency by Nutanix

2. PART 1 – Problems with RAID and Object Based Storage for data protection

3. PART 2 – Problems with RAID and Object Based Storage for data protection

ESXi Host Isolation Response and custom isolation address configuration.

I was reviewing a vSphere design recently and I came across an interesting design choice which I thought I would share.

The architect selected the isolation response of “Leave Powered On” and disabled  “das.usedefaultisolationaddress”  (which is by default enabled) and configured multiple custom isolation addresses using the “das.isolationadressX” advanced setting.

The architect explained that this was done to minimize the chance of a false positive isolation event. In many environments such as ones using IP storage or where the ESXi Management VMKernel default gateway is not highly available, this can be a very good idea.

In this environment, the storage was provided via FC and the default gateway was highly available.

So was there a benefit in changing the default setting of “das.usedefaultisolationaddress” and configuring custom isolation addresses?

The short answer is No.

This is because the isolation response is configured with “Leave Powered On” so regardless of the host being isolated or not, the Virtual Machines will remain powered on.

So keep it simple, if your isolation response is “Leave Powered On” there is no need to change either of these advanced settings.

The below articles show examples of isolation response and custom isolation addresses configurations for IP Storage, FC storage and Hyper-converged environments.

Related Articles

1. Host Isolation Response for IP Storage
2. Host isolation response for FC based Storage
3. Host Isolation Response for a Nutanix Environment